
VerifiedFT: A Verified, High-Performance
Precise Dynamic Race Detector

James R. Wilcox
University of Washington

Cormac Flanagan
University of California, Santa Cruz

Stephen N. Freund
Williams College

Abstract
Dynamic data race detectors are valuable tools for testing
and validating concurrent software, but to achieve good
performance they are typically implemented using sophisti-
cated concurrent algorithms. Thus, they are ironically prone
to the exact same kind of concurrency bugs they are de-
signed to detect. To address these problems, we have devel-
oped VerifiedFT, a clean slate redesign of the FastTrack
race detector [19]. The VerifiedFT analysis provides the
same precision guarantee as FastTrack, but is simpler to
implement correctly and efficiently, enabling us to mechani-
cally verify an implementation of its core algorithm using
CIVL [27]. Moreover, VerifiedFT provides these correctness
guarantees without sacrificing any performance over current
state-of-the-art (but complex and unverified) FastTrack im-
plementations for Java.

CCS Concepts • Software and its engineering → Syn-
chronization; Concurrent programming languages;
Software defect analysis; Formal software verifica-
tion;

Keywords Data races, concurrency, dynamic analysis
ACM Reference Format:
James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. 2018.
VerifiedFT: A Verified, High-Performance Precise Dynamic Race
Detector. In Proceedings of PPoPP ’18: Principles and Practice of Par-
allel Programming, Vienna, Austria, February 24–28, 2018 (PPoPP
’18), 14 pages.
https://doi.org/10.1145/3178487.3178514

1 Introduction
In order to fully exploit the performance available onmodern
hardware, programmers must write concurrent software. But
designing fast concurrent algorithms requires avoiding the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178514

dual pitfalls of (1) over-synchronization, which leads to poor
performance, and (2) under-synchronization, which leads to
subtle correctness bugs that are difficult to detect, reproduce,
and eliminate. Consequently, validating a concurrent algo-
rithm requires both empirical performance measurement
as well as rigorous testing and formal, even mechanically-
verified, correctness arguments.

Given the difficulty of these tasks, a wide variety of tools
exist to facilitate building correct concurrent code. In this
paper, we focus on dynamic race detectors. A dynamic race
detector typically instruments the target program to exe-
cute an event handler for each relevant action of the target
program, such as a heap memory access or synchronization
operation. These event handlers are called on every such
program action. One common strategy to mitigate the re-
sulting analysis overhead is to execute each event handler in
the same thread that generated the event, as in [19, 49, 51]
and others. Thus, event handlers may execute concurrently,
making dynamic race detectors themselves concurrent al-
gorithms, subject to the same performance and correctness
challenges mentioned above.
To address those challenges, we present VerifiedFT, a

clean-slate redesign of the FastTrack race detector [19, 20].
Like FastTrack, VerifiedFT is designed to be precise: it
reports an error if and only if a race occurs. Moreover, Veri-
fiedFT achieves state-of-the-art performance and while also
supporting a mechanically-verified correctness proof for an
idealized implementation of its core algorithm.
Earlier papers [19, 20] presented an idealized sequen-

tial implementation of the FastTrack analysis specifica-
tion that was not mechanically verified. To improve perfor-
mance, our FastTrack implementations for Java (available
on github [45]) extended that idealized implementationwith
complex synchronization, including write-protected data, op-
timistic concurrency with retries, benign (but subtle) data
race conditions, and intricate data invariants. This complex-
ity led to implementations that we found difficult to build,
debug, and maintain. Indeed, several committed changes
(e.g. [46, 47]) address problems where our analysis code han-
dled rare but possible situations incorrectly, leading to the
irony of concurrency bugs in a concurrency bug detector.
Such bugs could in theory lead to missed races or false

positives. Missing races compromises the checker’s primary
objective of providing a strong race-free guarantee. False
positives are time-consuming and challenging to recognize
because they often require a deep understanding of both the

https://doi.org/10.1145/3178487.3178514
https://doi.org/10.1145/3178487.3178514

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

target program and the race detector itself. Mechanically
verifying the core VerifiedFT implementation enables us to
avoid these scenarios.

Our approach for developing VerifiedFT involves the co-
design of three components: a high-level specification; an
optimized idealized implementation using a sophisticated
synchronization discipline; and a formal argument showing
that the implementation satisfies the specification. The pro-
cess required carefully considering both the performance
and proof-burden tradeoffs of each design decision.
At the specification level, we modified the original Fast-

Track analysis rules in several ways. One of the key changes
eliminates an optimization that added significant implemen-
tation complexity but ultimately offered no clear perfor-
mance benefit. Another introduces specialized, lower-overhead
handling of a common memory access pattern.

At the implementation level, our primary objective was to
develop lock-free code for the three most common analysis
rules, which handle 85% of all accesses. In order to permit
these cases to be lock-free, the synchronization discipline
is necessarily sophisticated, utilizing a mix of immutable
data, thread-local data, read-only data, lock-protected data,
write-protected data, and volatile data, as well as synchro-
nization mechanisms that change over time. Despite having
a sophisticated synchronization discipline, the code itself is
straightforward.
We prove the idealized implementation correct by show-

ing that each event handler is serializable and then using
sequential reasoning to show each handler satisfies the anal-
ysis specification. Our proof of serializability is based on an
extended form of Lipton’s theory of reduction [24, 25, 33, 57].
We have mechanically verified serializability and functional
correctness for our idealized implementation using the CIVL
verification tool [27].

Complementary prior work used Coq [37] to mechanically
verify that the original FastTrack specification is precise
and that an idealized implementation of a basic vector-clock
dynamic race detector employing simple lock-based syn-
chronization is correct with respect to its specification [34].
We go beyond that work to mechanically verify the cor-
rectness of an idealized implementation containing both
1) FastTrack’s more advanced dynamic analysis and 2) a
sophisticated synchronization discipline enabling lock-free
fast paths for common cases. Both are essential for reducing
checking overhead.
We have implemented VerifiedFT for Java in the Road-

Runner framework [21, 45]. Our implementation is faster
than our earlier lock-based FastTrack implementation and
comparable in speed to our earlier CAS-based variant. It
is also compatible and complementary with techniques to
reduce FastTrack checking overhead by, for example, com-
pressing analysis state or optimizing where checks occur [22,

29, 44, 53, 58]. VerifiedFT can be readily used in those sys-
tems to provide strong correctness guarantees without im-
pacting performance.

In summary, this paper contributes the following:
• The VerifiedFT high-level specification that, while only
a modest extension of the original FastTrack specifica-
tion, serves as a better foundation for a fast and correct
implementation (Section 3).

• The VerifiedFT concurrent algorithm, presented as basic
and optimized idealized implementations (Sections 4 and 5)
and embodied in our Java implementation (Section 7).

• A mechanically-verified proof that each concurrent event
handler satisfies its specification (Section 6).

• Performance results showing that the VerifiedFT imple-
mentation for Java is as fast as or faster than existing
state-of-the-art FastTrack implementations (Section 8).

2 Preliminaries
We begin by formalizing the notions of execution traces
and race conditions. A program consists of a number of
concurrently executing threads, each with a thread identifier
t ∈ Tid = {A,B, . . .}, and a trace α captures an execution of
a program by listing the sequence of operations performed
by the various threads.

α ∈ Trace ::= Operation∗

a,b ∈ Operation ::= rd(t ,x) | wr(t ,x) | acq(t ,m) | rel(t ,m)

| fork(t ,u) | join(t ,u)

u, t ∈ Tid x ,y ∈ Var m ∈ Lock

The set of operations that a thread t can perform include:
• rd(t ,x) and wr(t ,x) read and write a variable x ;
• acq(t ,m) and rel(t ,m) acquire and release a lockm;
• fork(t ,u) forks a new thread u; and
• join(t ,u) blocks until thread u terminates.

We restrict our attention to feasible traces that respect
the usual constraints on forks, joins, and locking operations,
i.e., (1) no thread acquires a lock previously acquired but
not released by a thread, (2) no thread releases a lock it did
not previously acquire, (3) each thread is forked at most
once (4) there are no instructions of a thread u preceding
an instruction fork(t ,u) or following an instruction join(t ,u),
and (5) there is at least one instruction of thread u between
fork(t ,u) and join(t ′,u).

The happens-before relation <α for a trace α is the smallest
transitively-closed relation over the operations1 in α such
that the relation a <α b holds whenever a occurs before b
in α and one of the following holds:

1In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier, but, to avoid clutter, we do not include this unique identifier in
the concrete syntax of operations.

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

Program order: The two operations are performed by the
same thread.

Locking: The two operations acquire/release the same lock.
Fork-join: One operation is fork(t ,u) or join(t ,u) and the

other operation is by thread u.
If a happens before b, then it is also the case that b happens

after a. If two operations in a trace are not related by the
happens-before relation, then they are considered concurrent.
Two memory access conflict if they both access (read or
write) the same variable, and at least one of the operations is
a write. Using this terminology, a trace has a race condition
if it has two concurrent conflicting accesses.

3 VerifiedFT Analysis
We now introduce our VerifiedFT analysis for traces and
its formal specification. We begin with an overview of the
information VerifiedFT tracks at run time and how Veri-
fiedFT detects races. We then describe VerifiedFT’s high-
level specification as a state transition system. VerifiedFT
modifies and extends the original FastTrack analysis in
several ways, and we conclude this section with a discussion
of how VerifiedFT’s analysis differs from FastTrack’s.

Epochs and Vector Clocks. At any point during execution,
each thread t has an associated clock c ∈ Nat that is incre-
mented at each release (or fork) operation. We refer to a pair
of a thread and clock as an epoch, denoted t@c . Epochs sup-
port the following operations (which are undefined if they
mix epochs from different threads) and minimal element.

t@c1 ≤ t@c2 iff c1 ≤ c2

max(t@c1, t@c2) = t@max(c1, c2)

t@c + 1 = t@(c + 1)
tid(t@c) = t

⊥e = A@0

Note that the minimal epoch is not unique; another is B@0.
A vector clock V ∈ VC = Tid → Epoch records an epoch

for each thread. We maintain the invariant that all vector
clocks are well-formed in that for all t , tid(V (t)) = t . Vector
clocks are partially-ordered (⊑) in a point-wise manner, with
a join operation (⊔) and minimal element (⊥V). The helper
function inct increments the t-component of a vector clock:

V1 ⊑ V2 iff ∀t . V1(t) ≤ V2(t)

V1 ⊔ V2 = λt .max(V1(t),V2(t))

⊥V = λt . t@0
inct (V) = λu . if u = t then V (u) + 1 else V (u)

An epoch t@c happens before a vector clock V (t@c ⪯ V)
if and only if the epoch is less than or equal to the corre-
sponding epoch in the vector:

t@c ⪯ V iff t@c ≤ V (t)

Thread A Thread B

x = 0

rel(m)

acq(m)

s = x

t = x

x = 1

V

V

V

V

V

SA.V SB.V
Sx

Sm.V V R W

⟨4,0⟩ ⟨0,8⟩ ⟨0,0⟩ ⊥ A@1 A@1

⟨4,0⟩ ⟨0,8⟩ ⟨0,0⟩ ⊥ A@1 A@4

⟨5,0⟩ ⟨0,8⟩ ⟨4,0⟩ ⊥ A@1 A@4

⟨5,0⟩ ⟨4,8⟩ ⟨4,0⟩ ⊥ A@1 A@4

⟨5,0⟩ ⟨4,8⟩ ⟨4,0⟩ ⊥ B@8 A@4

⟨5,0⟩ ⟨4,8⟩ ⟨4,0⟩ ⟨5,8⟩ SHARED A@4

 Race!

Figure 1. Example VerifiedFT analysis state.

Analysis State. VerifiedFT maintains an analysis state S
that records history information for each thread t , lockm,
and variable x . As in FastTrack, that state includes a vector
clock St .V for each thread t such that, for any other thread
u, the clock entry St .V (u) records the epoch for the last
operation of u that happens before the current operation of
thread t . Additionally, St .V (t) records the current epoch of
thread t . The algorithm also maintains a vector clock Sm .V
for each lockm. That vector clock records the time of the
last release of the lock.
Figure 1 illustrates how these components are updated

while analyzing part of a trace. We use ⟨m,n⟩ to abbreviate
vector clock ⟨A@m,B@n⟩. When thread A releases lock m,
Sm .V becomes SA.V = ⟨4, 0⟩, and SA.V is incremented to
⟨5, 0⟩ to reflect that later steps ofA happen after that release.
Similarly, when thread B acquires m, SB .V is joined via ⊔

with Sm .V , reflecting that later steps of B happen after the
release by A.
To identify when an access to a variable x races with a

previous write to x , VerifiedFT records in Sx .W the epoch
of the last write to each variable x . If the trace so far is
race-free, then all observed writes are totally ordered by the
happens-before relation, and this information about the last
write is sufficient to detect if any previous write races with
a subsequent access to x . Specifically, if thread t accesses x ,
that access does not race with any previous writes if and only
if Sx .W ⪯ St .V . For example, consider the read of x by thread
B in Figure 1. Immediately before the read, Sx .W = A@4 and
SB .V = ⟨4, 8⟩. Since A@4 ⪯ ⟨4, 8⟩, this access is race-free.

To identify when a write to a variable x races with a pre-
vious read of x , VerifiedFT records the read history of x
using FastTrack’s adaptive representation. If all reads of x
have been totally ordered, then we only record in Sx .R the
epoch of the last read of x . Alternatively, if there have been
concurrent reads of x , then Sx .R is a special flag Shared,
and Sx .V is a clock vector in which Sx .V (t) is the epoch of
the last read of x by thread t . Switching to the vector clock
is necessary because a subsequent write could race with any
of those unordered reads.

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

In Figure 1, after thread B reads x , Sx .R is set to B@8 to
reflect when that read occurred. The subsequent read byA is
a race-free concurrent read, leading Sx .R to become Shared
and Sx .V to become ⟨5, 8⟩, the vector clock recording the
two concurrent reads. When threadAwrites to x in the final
step, Sx .V = ⟨5, 8⟩ ̸⊑ ⟨5, 0⟩ = SA.V , indicating a race.
In summary, the VerifiedFT analysis state records a

ThreadState, LockState, or VarState for each thread, lock, and
variable, respectively:

S ∈ State : Tid → ThreadState
∪ Lock → LockState
∪ Var → VarState

ThreadState = { V :VC }

LockState = { V :VC }

VarState = { V :VC,R: (Epoch ∪ {Shared}),W :Epoch }

We use St , Sm , and Sx , to refer to the records for thread t ,
lockm, and variable x . The initial analysis state is:

S0 = λt .{V : inct (⊥V)}

∪ λm.{V : ⊥V }

∪ λx .{V : ⊥V ,R : ⊥e ,W : ⊥e }

Analysis Rules. Whenever a target program performs an
operation a, VerifiedFT updates its analysis state via the
transition relation S ⇒a S ′ shown in Figure 3. The relation
S ⇒a Error indicates a race has been detected, and the
analysis stops once this occurs.
The first six rules analyze a read operation rd(t ,x) per-

formed by the target program. Rule [Read Same Epoch]
optimizes the case where x was already read in the current
epoch, i.e. since the last synchronization operation. In this
situation, checks on the earlier access are sufficient to ensure
the read is race-free [19]. The term Et abbreviates St .V (t),
the current epoch for thread t . Rule [Read Shared Same
Epoch] similarly optimizes the case where x is read-shared
and previously read in this epoch.
The next three read rules all check for write-read con-

flicts via the epoch-VC comparison Sx .W ⪯ St .V , but differ
in how they update the read history in Sx .R and Sx .V . If
Sx .R = Shared, then [Read Shared] simply updates Sx .V (t)
appropriately. (Here, S[x .V := v] denotes the state that is
identical to S except that Sx .V is now updated to v .)
If Sx .R , Shared and the current read happens after the

previous read (i.e., Sx .R ⪯ St .V), then [Read Exclusive]
updates Sx .R to be the thread’s current epoch. Alternatively,
if the current read is concurrent with the previous read, then
[Read Share] uses a vector clock to record the epochs of
both reads, since either read could subsequently participate
in a read-write race. The rule [Write-Read Race] detects
when a read races with the most recent write.

The next six rules analyze a write operation wr(t ,x) per-
formed by the target program. Rule [Write Same Epoch]
optimizes the case where x was already written in this epoch,

S ⇒a S ′, S ⇒a Error

[Read Same Epoch]

Sx .R = Et

S ⇒rd(t,x) S

[Read Shared Same Epoch]
Sx .R = Shared

Sx .V (t) = Et

S ⇒rd(t,x) S

[Read Shared]
Sx .R = Shared
Sx .W ⪯ St .V

v = Sx .V [t := Et]

S ⇒rd(t,x) S[x .V := v]

[Read Exclusive]
Sx .R , Shared
Sx .W ⪯ St .V
Sx .R ⪯ St .V

S ⇒rd(t,x) S[x .R := Et]

[Read Share]
Sx .R = u@c
Sx .W ⪯ St .V u , t

v = ⊥V [t := Et ,u := Sx .R]
S ′ = S[x .R := Shared,x .V := v]

S ⇒rd(t,x) S ′

[Write-Read Race]

Sx .W ̸⪯ St .V

S ⇒rd(t,x) Error

[Write Same Epoch]

Sx .W = Et

S ⇒wr(t,x) S

[Write Exclusive]
Sx .R , Shared
Sx .R ⪯ St .V
Sx .W ⪯ St .V

S ⇒wr(t,x) S[x .W := Et]

[Write Shared]
Sx .R = Shared
Sx .V ⊑ St .V
Sx .W ⪯ St .V

S ⇒wr(t,x) S[x .W := Et]

[Write-Write Race]

Sx .W ̸⪯ St .V

S ⇒wr(t,x) Error

[Read-Write Race]
Sx .R , Shared
Sx .R ̸⪯ St .V

S ⇒wr(t,x) Error

[Shared-Write Race]
Sx .R = Shared
Sx .V ̸⊑ St .V

S ⇒wr(t,x) Error

[Acqire]
S ′ = S[t .V := (St .V ⊔ Sm .V)]

S ⇒acq(t,m) S ′

[Release]
S ′ = S[m.V := St .V , t .V := inct (St .V)]

S ⇒rel(t,m) S ′

[Join]
S ′ = S[t .V := (Su .V ⊔ St .V)]

S ⇒join(t,u) S ′

[Fork]
S ′ = S[u .V := (Su .V ⊔ St .V), t .V := inct (St .V)]

S ⇒fork(t,u) S ′

Figure 2. VerifiedFT Specification.

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

as above for reads. Rule [Write Exclusive] provides a fast
path when Sx .R is an epoch; this rule checks that the write
happens after all previous accesses.
In the case where Sx .R = Shared, [Write Shared] re-

quires a full (slow) VC comparison. The remaining three
write rules handle write-write and read-write races.

VerifiedFT handles acquire, release, fork, and join op-
erations as in FastTrack. When thread t acquires lockm,
the [acqire] rule joins t ’s vector clock St .V with Sm .V , the
time ofm’s last release, to record that subsequent operations
by thread t happen after that release. Correspondingly, when
thread t releases lockm, rule [release] records thread t ’s
current vector clock in Sm .V , and begins a new epoch for
thread t by incrementing its clock. When thread t joins on
thread u, rule [join] sets the current time for t to be the join
of the vector clocks for t and u. When thread t forks a thread
u, rule [fork] sets the forked thread’s time to be after the
time of the fork operation and moves the forking thread into
a new epoch by incrementing its clock.

Comparison to the FastTrack Specification. We made
three changes to the FastTrack analysis rules [19], both to
improve performance and to make them simpler to imple-
ment and reason about.
• We added the [Read Shared Same Epoch] rule, which is
not present in FastTrack. It substantially improves perfor-
mance in some programs, because it avoids unnecessary
checks when accessing a read-shared variable multiple
times in the same epoch.

• In the case where Sx .R = Shared, the FastTrack [Write
Shared] rule changes Sx .R back to ⊥e , essentially forget-
ting all reads before the write. This enables subsequent
write checks to be constant-time, since a subsequent race
with any of those reads would also race with the write.
We found that this optimization led to no improvement
in practice, and actually degraded performance for some
usage patterns by causing Sx .R to “thrash” between the
shared and unshared states. Consequently, the VerifiedFT
[Write Shared] rule does not change Sx .R. This change
also simplifies the correctness argument we present below.

• The FastTrack [Join] rule increments the vector clock
entry Su .V [u] of the thread being joined. That update is
unnecessary and eliminating it in VerifiedFT simplifies
the synchronization discipline (but does add some minor
complexity to the proof of Theorem 3.1 below).

Correctness of the VerifiedFT Analysis. Like Fast-
Track, the VerifiedFT analysis rules are precise and report
an error if and only if the observed trace contains a data race,
as characterized by the following theorem.

Theorem 3.1 (Correctness). Suppose α is a feasible trace.
Then α is race-free if and only if S0 ⇒α S for some S .

The proof primarily follows the same structure as the original
FastTrack proof [19].

4 Idealized Implementation, Version 1
Analysis State andEventHandlers. Figure 3 presentsVer-
ifiedFT-v1, a basic concurrent implementation of the analy-
sis rules. The analysis state is represented as the ThreadState,
LockState, and VarState objects, as defined on lines 1–7 .
That figure also includes a VectorClock class, as well as an
epoch data type and associated operations. (Our actual im-
plementation bit-packs epochs in 32-bit integers, but here we
use the datatype to simplify our exposition.) These classes
match the analysis state S defined in Section 3, with the
additional t field in ThreadState to facilitate recovering
a thread’s identifier (encoded as an integer) from its corre-
sponding ThreadState object.

Each VectorClock contains an internal array V of epochs
indexed by thread identifiers. Our implementation preserves
the invariant that each entry V[t] is a valid epoch for thread
t . The VectorClock class contains set and get methods to
access the elements in V. Setting the epoch for a thread t
that is outside the current bounds of V necessitates allocating
a larger array via ensureCapacity. Getting the epoch for
a thread t outside the current bounds of V simply results
in the minimal epoch t@0 for t . VectorClocks also support
inc, leq, and join methods implemented according to the
definitions in Section 3, as well as a copy method.
We assume the underlying run-time system maintains a

one-to-one mapping between threads, locks, and variables in
the target program and corresponding ThreadState, Lock-
State, and VarState objects, and that each handler runs in
the thread performing the operation. Thus multiple event
handlers may run concurrently. These assumptions match
features provided by the RoadRunner analysis framework
for Java [21], which we use for our prototypes, and they
enable us to model and reason about analyses at the level
of our trace language, independent of the target language
or platform. The handlers for acquire and join run after the
target operations inducing those events. The rest run before
the corresponding target operation.

The right column of Figure 3 presents code to handle the
six operations in our trace language. Each handler manipu-
lates the analysis state in the exact same way as the formal
analysis rules in Section 3. In read and write, there is a clear
correspondence between execution paths through the meth-
ods and the analysis rules, which we highlight. by labelling
the end of each path with the rule that it implements. The
code for the [. . . Same Epoch] cases are first because they
are the most common. The remaining cases are ordered to
minimize the number of memory accesses and computation
steps required.

Synchronization Discipline. VerifiedFT-v1 uses mutex
locks to protect all mutable shared data in the analysis state.
In more detail, given the VarState sx for a variable x in
the target program, the LockState sm for lock m, and the

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

1 class ThreadState extends VectorClock {
2 final int t;
3 }
4 class LockState extends VectorClock { }
5 class VarState extends VectorClock {
6 epoch R,W;
7 }
8

9 datatype epoch = t@c | SHARED;
10

11 TID(t@c) ≡ t
12 LEQ(t@c, t@d) ≡ c ≤ d
13 MAX(t@c, t@d) ≡ t@(max(c,d))
14 INC(t@c) ≡ t@(c+1)
15

16

17 class VectorClock {
18 // invariant: V is unique pointer
19 // invariant: for all t, TID(get(t)) == t
20 epoch[] V = new epoch[0];
21

22 void ensureCapacity(int n) {
23 if (n > this .V .length) {
24 epoch[] newV = new epoch[n];
25 for (int i=0; i<n; i++) newV[i] = get(i);
26 this .V = newV;
27 }
28 }
29

30 void set(int t, epoch e) {
31 ensureCapacity(t+1); this .V[t] = e;
32 }
33

34 epoch get(int t) {
35 epoch a[] = this .V;
36 return (t < a .length) ? a[t] : t@0;
37 }
38

39 void inc(int t) { set(t, INC(get(t)); }
40

41 int size() { return this .V .length; }
42

43 boolean leq(VectorClock other) {
44 int n = max(size(), other .size());
45 for (int i = 0; i < n; i++)
46 if (!LEQ(get(i), other .get(i)) return false;
47 return true;
48 }
49

50 void join(VectorClock other) {
51 for (int i = 0; i < other .size(); i++)
52 set(i, MAX(get(i), other .get(i)));
53 }
54

55 void copy(VectorClock other) {
56 int n = max(size(), other .size());
57 for (int i=0; i<n; i++) set(i, other .get(i));
58 }
59 }

60 void read(ThreadState st, VarState sx) {
61 int t = st .t;
62 epoch e = st .get(t);
63 synchronized(sx) {
64 epoch r = sx .R;
65 if (r == e) return; [Read Same Epoch]
66 if (r == SHARED && sx .get(t) == e)
67 return; [Read Shared Same Epoch]
68 epoch w = sx .W;
69 assert LEQ(w, st .get(TID(w)));[Write-Read Race]
70 if (r != SHARED) {
71 if (LEQ(r, st .get(TID(r))) {
72 sx .R = e; [Read Exclusive]
73 } else {
74 sx .set(TID(r), r);
75 sx .set(t, e);
76 sx .R = SHARED; [Read Share]
77 }
78 } else {
79 sx .set(t, e); [Read Shared]
80 }
81 } // release
82 }
83

84 void write(ThreadState st, VarState sx) {
85 int t = st .t;
86 epoch e = st .get(t);
87 synchronized(sx) {
88 epoch w = sx .W;
89 if (w == e) return; [Write Same Epoch]
90 assert LEQ(w, st .get(TID(w))); [Write-Write Race]
91 epoch r = sx .R;
92 if (r != SHARED) {
93 assert LEQ(r, st .get(TID(r))); [Read-Write Race]
94 sx .W = e; [Write Exclusive]
95 } else {
96 assert sx .leq(st); [Shared-Write Race]
97 sx .W = e; [Write Shared]
98 }
99 } // release
100 }
101

102 void acquire(ThreadState st, LockState sm) {
103 st .join(sm); // m is held
104 }
105

106 void release(ThreadState st, LockState sm) {
107 sm .copy(st); // m is held
108 st .inc(st .t);
109 }
110

111 void join(ThreadState st, ThreadState su) {
112 st .join(su); // has joined on u
113 }
114

115 void fork(ThreadState st, ThreadState su) {
116 su .join(st); // t will start u
117 st .inc(st .t);
118 }

Figure 3. VerifiedFT-v1 Idealized Implementation.

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

ThreadState st for thread t, the synchronization discipline
is as follows.
sx.W, sx.R, sx.V, sx.V[*]: Protected by the lock sx.2

sm.V, sm.V[*]: Protected by the lock m from the target.
st.t: Read-only.
st.V, st.V[*]: Initially thread-local to the unique thread
that will fork thread t. Once thread t has been forked, these
locations are thread-local to t. After t terminates, they
are read-only and accessible by any thread that has joined
on t. The fork-join happens-before orderings prevent race
conditions resulting from these phase changes.

If followed, this discipline ensures race freedom, since at
most one thread can ever access any mutable analysis state.

Serializability. The first step in showing that VerifiedFT-
v1 correctly implements the analysis rules is to prove that
each handler is serializable. A method is serializable [23, 33]
if, for every (arbitrarily interleaved) program execution, there
is an equivalent execution with the same overall behavior
in which the method executes serially, with no interleaved
actions of other threads. To show serializability, we employ
Lipton’s theory of reduction [23, 33]. We label each mem-
ory and synchronization operation in each handler with its
commuting behavior (R, L, B, or N) to indicate whether it:

R: right-commutes with operations of other threads;
L: left-commutes with operations of other threads;
B: both right- and left-commutes; or
N: is a single non-mover atomic action.

We illustrate these annotations with the write handler in
Figure 3. Consider the acquire of sx on line 87 of write.
Suppose this acquire is immediately followed in a trace by
an operation b of a second thread. Since sx is already held
by the first thread, the action b neither acquires nor releases
that lock, and hence the acquire operation can be moved
after (to the right of) b without changing the resulting state.
Thus a lock acquire operation is a right-mover (R).

Similarly, suppose the lock release on line 99 of write is
preceded by an operation b by a second thread. Operation b
can neither acquire nor release the lock since it is held by the
first thread. Hence the lock release operation can be moved
to the left of b without changing the resulting state, and thus
a lock release operations is a left-mover (L).

Next, consider the read of sx.W on line 88. Since that field
is race-free, there are no concurrent conflicting accesses, and
this access is thus a both-mover (B). Indeed, all data accesses
in write are race-free and both-movers.
Finally, consider the call to sx.get(t) on line 86. Since

the two reads of st.V and st.V[t] inside the callee are both-
movers (B), we also label the call itself as a both-mover (B),

2 When defining the synchronization discipline, a term of the form sx.V[i]
describes the single memory operation of reading the value at index i out
of an array reference previously read from sx.V.

and similarly for the other calls. The annotations for the
entire write method are thus:

void write(ThreadState st, VarState sx) {
B int t = st .t;
B epoch e = st .get(t);
R synchronized(sx) {
B epoch w = sx .W;
B //. . . remainder of write code . . .
L }
}

According to Lipton’s theory, any sequence of stepsmatching
the pattern (B|R)∗[N](B|L)∗ is serializable. Since all execution
paths through writematch this pattern, write is serializable.
The read method is similarly serializable.

The acquire and release event handlers follow the pre-
scribed synchronization discipline since they are always
called with the lock m held, and all accesses they perform are
both-movers (B). Thus, they too are serializable.
The fork(st,su) handler is run by a thread t before

it forks thread u corresponding to the state object su. Ac-
cording to the synchronization discipline, it has exclusive
access to su.V and su.V[*], meaning that all memory ac-
cesses in fork are again both-movers (B). That is also the
case for join(st,su) since the thread t running the join
handler has previously joined on thread u. Given that su.V
and su.V[*] are now read-only, join is also serializable.

Functional Correctness. After proving that the six event
handlers are serializable, sequential reasoning suffices to
prove that each code path accesses and modifies the analysis
state in exactly the same way as the specification provided
by the analysis rules.

Comparison to Prior FastTrack Implementations. Ver-
ifiedFT-v1 is correct but slow. A Java implementation of
VerifiedFT-v1 exhibits an overhead of about 15x in our ex-
periments (Section 8). Two key contributors to this overhead
are acquiring/releasing the lock sx on every read or write
to x and lock contention on sx when there are concurrent
reads of x. The latter in effect serializes otherwise-concurrent
accesses to read-shared variables in the target program.
Our two prior FastTrack implementations for Java, FT-

Mutex and FT-CAS attempt to mitigate the overhead via
complex synchronization mechanisms for VarState objects.
FT-Mutex uses the lock sx to write-protect the fields of sx.
That is, writes to those fields are protected by the lock, but
reads may not be. To ensure serializability, the handlers use
an optimistic control mechanism that detects whether any
value read frommemory has been modified prior to updating
the analysis state. The handler retries in the case that there is
interference. This approach enables the [Read Same Epoch]
and [Write Same Epoch] cases to be lock free (since no
writes occur) but introduces a number of subtle ordering
issues related to accessing the vector clock component of sx.

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

127 void read(ThreadState st, VarState sx) {
128 B int t = st .t;
129 B epoch e = st .get(t);
130 | pure {
131 | N/R epoch r = sx .R;
132 | if (r == e) return; [Read Same Epoch]
133

B | N if (r == SHARED && sx .get(t) == e)
134 | return; [Read Shared Same Epoch]
135 | }
136 R synchronized(sx) {
137 B epoch w = sx .W;
138 B assert LEQ(w, st .get(TID(w)));[Write-Read Race]
139 B epoch r = sx .R;
140 if (r != SHARED) {
141 B if (LEQ(r, st .get(TID(r))) {
142 N sx .R = e; [Read Exclusive]
143 } else {
144 B sx .set(TID(r), r);
145 B sx .set(t, e);
146 N sx .R = SHARED; [Read Share]
147 }
148 } else {
149 B sx .set(st .t, e); [Read Shared]
150 }
151 L }
152 }
153

154 void write(ThreadState st, VarState sx) {
155 B int t = st .t;
156 B epoch e = st .get(t);
157 | pure {
158 | N epoch w = sx .W;
159

B | if (w == e) return; [Write Same Epoch]
160 | }
161 R synchronized(sx) {
162 B epoch w = sx .W;
163 B assert LEQ(w, st .get(TID(w)));[Write-Write Race]
164 B epoch r = sx .R;
165 if (r != SHARED) {
166 B assert LEQ(r, st .get(TID(r)));[Read-Write Race]
167 N sx .W = e; [Write Exclusive]
168 } else {
169 B assert sx .leq(st); [Shared-Write Race]
170 N sx .W = e; [Write Shared]
171 }
172 L }
173 }

Figure 4. VerifiedFT-v2 Idealized Implementation.

The FT-CAS variant embeds sx.W and sx.R in a single 8-
byte long that is always read and written atomically and uses
a similar optimistic mechanism based on atomic CAS opera-
tions. The lock sx is still used for the vector clock, and this
implementation suffers from some of the same complexities
as FT-Mutex.

5 Idealized Implementation, Version 2
We now present, VB, an optimized variant of our ideal-
ized implementation. In VerifiedFT-v2, we eliminate the
synchronization overheads mentioned above by removing
locking from the code for the three most common analysis
rules: [Read Same Epoch], [Write Same Epoch], and [Read-
Shared Same Epoch], which cover 60%, 14%, and 12% of all
accesses in our benchmarks, respectively. While effective,
these optimizations necessitate a more complex synchroniza-
tion discipline than VerifiedFT-v1. However, the approach
is still significantly simpler than the earlier FastTrack im-
plementations.

Optimized writeHandler. We improve the VerifiedFT-v1
write handler by initially reading sx.W without holding sx:
void write(ThreadState st, VarState sx) {
B int t = st .t;
B epoch e = st .get(t);
N epoch w = sx .W;
if (w == e) return; [Write Same Epoch]

R synchronized(sx) {
B epoch w = sx .W;

//. . . remainder of write from V1 . . .
L }
}

If the initial read of sx.W yields the current epoch e, the code
simply returns as prescribed by the [Write Same Epoch]
rule. Otherwise, the handler acquires the lock sx, re-reads
sx.W in case it has changed, and proceeds as before. To
avoid stale reads under relaxed memory models, we declare
VarState’s W field to be volatile [35]. We also modify the
synchronization discipline for sx.W as follows:
sx.W: Write-protected by lock sx.
This write-protected synchronization discipline means that
the lock sxmust be held for all writes to sx.W, but not neces-
sarily for reads. Consequently, lock-protected writes to sx.W
are non-movers (N), as there may be concurrent unprotected
reads, which would also be non-movers (N). However, lock-
protected reads of sx.W are both-movers (B) since holding
the lock sx precludes any concurrent writes.
Given this discipline, the new code block no longer

matches the reducible pattern (B|R)∗[N](B|L)∗ because the
initial read of sx.W (N) precedes the lock acquire (R), as indi-
cated above.
To verify that write is still serializable, we move the

[Write Same Epoch] code into a pure block [24, 25, 57],
as shown in Figure 4 (lines 157–160). Pure blocks do not
change behavior but simply indicate that:

1. every normally terminating execution of the pure block
(i.e., one that does not return) does not change the
program state; and

2. the execution of the pure block is optional (because
the handler still behaves correctly via the slower syn-
chronized code even if the pure block is skipped.)

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

The revised write handler can be proven serializable. In
particular, a skipped execution of the pure block is clearly
a both-mover (B) since it does not interact with concurrent
threads. Further, since any normally terminating execution
of the pure block does not change program state, that block
is observationally equivalent to a skipped pure block, and so
also is a both-mover (B). Thus, our proof strategy considers
normally terminating pure blocks to be both-movers [24, 25,
57], enabling us to verify that write is serializable.

Optimized read Handler. We optimize the read handler
by moving the [Read Same Epoch] case outside the critical
section on sx, and also the [ReadShared Same Epoch] case
to avoid serializing accesses to read-shared data. The new
read handler is shown in Figure 4 (lines 130–135).

When called by thread t, the handler now performs an un-
synchronized read of sx.R. If that yields the value Shared, it
also performs unsynchronized reads of sx.V and sx.V[t] in
the nested call to sx.get(t). It is important to note that the
array is only accessed at index t in this case. In addition, the
read handler also performs synchronized reads and writes
of all these locations and may call sx.set()which then calls
sx.ensureCapacity(), which may perform synchronized
reads of all array entries sx.V[*] and a write to sx.V while
resizing the vector clock. We adopt the following synchro-
nization discipline, which is permissive enough to permit
the above access patterns while still being strict enough to
ensure serializability since most accesses remain race-free
both-movers (B).
sx.R: Initially write-protected by lock sx, and immutable if
it becomes Shared. Consequently, reading sx.R with sx
held is a both-mover (B), as there are no concurrent writes.
Reading Shared from sx.R (possibly without the lock) is
a right-mover (R), as there are no subsequent writes. Other
accesses to sx.R are non-movers (N).

sx.V: Protected by lock sx when sx.R , Shared, and
write-protected by sx when sx.R = Shared. Thus, when
not shared, all accesses are lock-protected both-movers
(B). Once shared, unprotected reads are non-movers (N),
protected reads are both-movers (B), and protected writes
are non-movers (N), e.g. lines 142 and 146.

sx.V[t]: Protected by lock sx when sx.R , Shared. If
sx.R = Shared, then sx.V[t] can be read by any thread
hold lock sx (to permit vector clock resizing) or by thread
t without hold the lock (to support the lock-free fast path).
Conversely, sx.V[t] can be written only by thread t and
only when hold lock sx. Under this discipline, all accesses
are race free and thus both-movers (B).

We also declare ThreadState.R and VectorClock.V to be
volatile to avoid stale reads.

In the optimized handler in Figure 4 that follows this dis-
cipline, if the pure block reads the current epoch from sx.R,
that read is a non-mover (N), and the handler returns via the
[Read Same Epoch] fast path, which is serializable. If instead

sx.R contains Shared, that read is a right-mover (R) and
the subsequent reads of sx.V and sx.V[t] inside sx.get(t)
are a non-mover (N) and a both-mover (B), respectively, and
the sequence RNB is serializable. If neither fast path applies,
the analysis state is unchanged, and we may consider the
pure block to have been skipped, and hence a both-mover
(B). The rest of the read handler code is verified in the same
manner as before. The synchronization discipline ensures all
remaining accesses are both-movers (B), except for at most
one non-mover (N) write to sx.R on each code path, and thus
these paths are all reducible.

6 Verifying VerifiedFT in CIVL
We have translated the VerifiedFT-v2 idealized implementa-
tion and the analysis rule specification from Figure 3 into the
input language for the CIVL concurrent program verification
tool [12, 27, 28] and mechanically verified that each event
handler is serializable and functionally correct with respect
to its specification.

Following the CIVL methodology, we express VerifiedFT-
v2 as a stack of layers, with each layer only calling functions
from lower layers. Each CIVL function definition includes a
commuting annotation (e.g.: atomic, both, etc.) as well as a
functional specification expressed as an atomic action.

Layer 0, the lowest layer of abstraction, contains primitive
memory and synchronization operations. For example, the
functions to acquire/release the lock sx are written in Layer
0 as follows:3

void AcquireVarLock(linear st: ThreadState, sx: VarState)
right [assume sx .holder == nil; sx .holder = st;];

void ReleaseVarLock(linear st: ThreadState, sx: VarState)
left [assert sx .holder == st; sx .holder = nil;];

Like all Layer 0 functions, the specification in square brack-
ets also is the implementation, and CIVL verifies that this
implementation satisfies the declared commutativity.

We implement the lock on sx as an extra field sx.holder,
which is set to either the ThreadState object for the thread
holding the lock, or nil if it is not held. The specifications
indicate that the lock can only be acquired if it is not currently
held, and that only the holding thread can release it.

The linear annotation on the st parameter indicates that
concurrent calls to these functions will be passed different
st objects since each ThreadState object is local to a single
thread of the target program.

In CIVL, we formalize thewrite-protected synchronization
discipline for sx.W via the following three Layer 0 functions,
which express, for example, that reading sx.W is atomic (N)
if the lock is not held, and a both-mover if the lock is held.
epoch VarStateGetWNoLock(sx: VarState)

atomic [return sx .W;];

3Since CIVL’s syntax can be cumbersome, we present our code fragments
in a more readily-understood pseudo-code.

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

epoch VarStateGetW(linear st: ThreadState, sx: VarState)
both [assert sx .holder == st; return sx .W;];

void VarStateSetW(linear st: ThreadState, sx: VarState,
e: epoch)

atomic [assert sx .holder == st; sx .W = e;];

Additional Layer 0 functions include accessors for other
analysis state components, Layer 1 contains vector clock
operations, and Layer 2 contains the six event handlers.

Figure 5 contains an excerpt from the Layer 2 write han-
dler. The specification encodes a nondeterministic choice
among goto labels formalizing the analysis rules, and the
body uses the Layer 0 functions defined above, plus the
both-mover function ThreadStateGetE to read the execut-
ing thread’s current epoch. The handler returns false if it
detects a data race.
The body of write contains explicit yield points to in-

dicate where interference may be visible, including at start
of the code and immediately before each exit. To ensure
that write is atomic and correct, CIVL partitions each path
through the body into fragments separated by yields. It then
verifies that one of those fragments conforms to themethod’s
atomic specification and that the rest have no effect on visi-
ble state. Thus, while CIVL does not directly support pure
blocks, it does provide a means to verify the code for write
is correct. In particular, we insert a yield point after the
pure block. For paths extending past that point, CIVL ver-
ifies that the fragment before the yield has no effect and
that the fragment after the yield properly implements the
given atomic specification.
While not shown due to space limitations, we also intro-

duce invariants and function pre-/post conditions necessary
to carry out the verification at each layer.4 They capture, for
example, that vector clocks store appropriate epochs at each
index, that a VarState object that has entered Sharedmode
remains in Shared mode, and that the event handler calls
respect the conditions for feasible traces in Section 2.
We encode this feasible trace restriction by introducing

additional global variables to capture which threads are cur-
rently running, which have terminated, which have joined
on each thread, etc. Explicit conditions on yield instruc-
tions restrict how other threads may alter visible state at
yield points.

To gain confidence that we properly encoded the feasible
trace restriction, we extend our CIVL implementation with
an additional non-deterministic test driver at Layer 3 that
models every thread in the system performing every possible
sequence of operations compatible with the trace invariants.

Overall, our experience with CIVL was quite positive. The
iterative abstraction refinement methodology it supports
was an excellent match for the approach we took in our

4Full details of these specifications can be found in our implementation,
which is available on line [13].

boolean write(linear st: ThreadState, sx: VarState)
atomic [

goto WriteFastPath, WriteExclusive, WriteWriteRace, . . .;
WriteFastPath:

assume sx .W == st .V[t];
return true;

WriteExclusive:
assume LEQ(sx .W, st .V[TID(sx .W)]);
assume sx .R != SHARED && LEQ(sx .R, st .V[TID(sx .R)]);
sx .W = st .V[t];
return true;

WriteWriteRace:
assume !LEQ(sx .W, st .V[TID(sx .W)]);
return false;

. . .
]

{
yield;
epoch e = ThreadStateGetE(st);
// pure {

epoch w = VarStateGetWNoLock(sx);
if (w == e) { yield; return true; } // [Write Same Epoch]

// }
yield;
AcquireVarLock(st, sx);
w = VarStateGetW(st, sx);
. . .
VarStateSetW(st, sx, e);
ReleaseVarLock(st, sx);
yield;
return true;

}

Figure 5. CIVL pseudo-code for write.

development. Layers 0–2 contains roughly 900 lines of CIVL
code, and Layer 3 contains an additional 250.

7 VerifiedFT Implementation for Java
We have implemented VerifiedFT v1 and v2 in the Road-
Runner analysis framework for Java [21]. RoadRunner
takes as input a compiled target program and inserts in-
strumentation code to generate an event stream of memory
and synchronization operations that is then processed by
the analysis. While the analysis rules and idealized imple-
mentations stop at the first error, our Java implementations
continue checking until the target finishes. This section out-
lines a number of implementation details not present in our
idealized implementations.

Additional Synchronization Primitives. Our implemen-
tation supports other forms of synchronization, including
volatile variables, wait/notify, and barriers, as in the stan-
dard FastTrack implementations [19, 45]. Our implemen-
tation also captures the happens-before orderings between
the static initializers and uses of a static variables or classes.

State Representation and Fast Paths. RoadRunner’s pro-
gramming model is optimized for performance in various
ways and necessitates maintaining objects for thread, lock,

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

and variable state via different mechanisms than the simpli-
fied model presented here. RoadRunner also enables tools
to provide specialized read/write fast path handlers that
are typically inlined into the target at each memory access.
VerifiedFT’s fast paths are essentially the same as the pre-
sented event handlers, except that they fail over to the slow
path handler on a detected race rather than raising an error.
This enables better error reporting because more diagnostic
information is available on the slow path and also because
static initializer order constraints are not considered on the
fast path for performance reasons.

Local Optimizations. A thread reads its current epoch fre-
quently. Thus we cache it in ThreadState to avoid extract-
ing it from ThreadState’s vector clock. Our vector clock
implementation optimizes Figure 3 by unrolling loops and
inlining nested method calls. We also optimize tests guar-
anteed to succeed via program order. For example, in the
write handler we rewrite LEQ(w, st.get(TID(w)) as

st .t == TID(w) || LEQ(w, st .get(TID(w))

If the last write epoch w is for the current thread, the previous
write happens before the current operation via program
order, and we can thus avoid accessing the vector clock.

8 Experimental Validation
We report the performance of our implementation on the
JavaGrande [32] and DaCapo [5] benchmark suites. We con-
figured the JavaGrande programs to use their largest data
sizes and 16 worker threads, and we configured the DaCapo
benchmarks to use their default sizes. Dacapo’s tradebeans
and eclipse programs are incompatible with our RoadRun-
ner framework and are omitted.
The DaCapo test harness uses a number of class loading

features not supported in RoadRunner. Thus, we extracted
the benchmarks from the DaCapo harness and ran them
(and also the JavaGrande programs) in a simplified harness
integrated into RoadRunner. That harness follows the same
model of running the target’s workload several times in a
warm-up phase and then measuring the running time for
repeated iterations of the workload. We used 10 iterations for
measurement, and repeated each experiment 10 times. Our
test platform was a 2.4GHz 16 core AMD Opteron processor
with 64GB of memory running Ubuntu Linux and Java 1.8.

Table 1 summarizes the base running time for each pro-
gram, as well as the VerifiedFT overhead. (The VerifiedFT-
v1.5 variant optimizes only the [Write Same Epoch] and
[Read Same Epoch] cases to highlight the necessity of opti-
mizing the [ReadShared Same Epoch] case.) We also report
overheads for the FT-Mutex and FT-CAS implementations
distributed with RoadRunner 0.4 [45]. These are described
in Section 4. Overhead is the additional time required to

Overhead (x Base Time)

Program

Base
Time
(sec)

FastTrack VerifiedFT

Mutex CAS v1 v1.5 v2

crypt 0.4 112.6 90.97 165.3 109.63 92.14
lufact 0.69 69.68 55.7 117.78 115.08 71.23
moldyn 4.87 29.11 27.77 47.45 32.4 25.26
montecarlo 2.24 8.7 9.84 13.34 7.27 7.32
raytracer 1.85 19.15 19.31 82.15 19.31 13.3
series 119.14 0.01 0.01 0.01 0.01 0.01
sor 0.74 15.29 11.59 19.04 15.86 15.84
sparse 1.28 36.15 26.81 316.85 246.02 25.5
avrora 6.18 1.6 1.37 3.81 1.61 1.56
batik 1.27 3.77 3.83 4.2 3.91 3.89
fop 0.3 10.33 9.96 11.39 10.13 10.19
h2 9.62 7.63 7.21 10.92 8.21 7.92
jython 5.37 8.68 8.29 9.02 8.47 8.5
luindex 0.54 17.01 13.84 33.91 16.53 16.49
lusearch 0.64 19.81 19.5 24.27 20.11 19.89
pmd 0.89 3.44 3.22 5.58 3.41 3.32
sunflow 1.47 30.95 29.52 158.82 152.67 25.38
tomcat 0.68 2.71 2.51 2.26 2.32 2.36
xalan 0.47 12.21 11.2 13.06 11.04 10.88

Geo Mean 8.87 8.11 15.0 10.8 8.12

Table 1. Overhead for FastTrack and VerifiedFT.

check a program:
CheckerTime − BaseTime

BaseTime
VerifiedFT-v2’s sophisticated synchronization discipline

is critical for performance. VerifiedFT-v1 lacks these opti-
mizations and has an overhead of 15.0x. Eliminating locking
for the [Read Same Epoch] and [Write Same Epoch] cases
reduced VerifiedFT-v1.5’s overhead to 10.8x. Eliminating
locking from the [ReadShared Same Epoch] case further
reduces the overhead to 8.12x. This final optimization is par-
ticularly beneficial for benchmarks like sunflow and sparse
that heavily use read-shared data. VerifiedFT-v2 is as fast or
faster than both previous implementations FT-Mutex (8.87x)
and FT-CAS (8.11x). (We also note that modifying FT-Mutex
and FT-CAS to use the revised VerifiedFT analysis rules
does not meaningfully improve their performance.)

In summary, these results show that VerifiedFT provides
simplicity and correctness without sacrificing any perfor-
mance in comparison to previous complex, error-prone, and
hard-to-maintain FastTrack implementations.
The performance of all of these race detectors can be

further improved via the static and dynamic optimization
techniques found in systems like BigFoot [44], which lowers
checking overhead to roughly 2.5xwhen built on top of either
the earlier FastTrack implementations or VerifiedFT-v2.

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

9 Related Work
Mechanically-Verified Concurrency Analyses. While
there has been much work verifying concurrent programs
in general, relatively little has looked at verified analyses of
concurrent programs.
In the most closely related work, Mansky et al. used the

Coq proof assistant [37] to formalize data races and prove
the soundness and completeness of the specification rules for
several high-level race detection analyses, including Fast-
Track [34]. This corresponds to mechanically proving Theo-
rem 3.1 from Section 3. They present two proofs. One is a di-
rect proof following a proof outlined in our earlier work [19],
which we also follow to prove Theorem 3.1. The second is
based on a bisimulation with a basic vector-clock-based anal-
ysis.
Mansky et al. also prove that an idealized implementa-

tion of the basic vector-clock-based analysis is correct with
respect to its specification. In contrast to VerifiedFT-v2,
their implementation (1) does not use FastTrack’s adaptive
epoch representation and (2) encloses all analysis code for
reads and writes within mutex-protected critical sections
(as in VerifiedFT-v1). As such, a complete implementation
based on that approach is likely to incur overhead higher
than VerifiedFT-v1.
One strength of their approach is that they show that

the analysis code, which is inserted into the target during
an instrumentation pass, does not interfere with the target
code. While valuable to show, proving this non-interference
property introduces significant complexity to their proof,
with handling instrumentation accounting for roughly 19,000
out of 21,000 lines of Coq definitions and proofs [34].

To avoid this complexity, our proof instead uses an event
handler model in which the target program cannot modify
the shadow state and the event handlers cannot modify the
program state. We believe non-interference could be shown
via a technique similar to theirs.

As another example of verified concurrent program anal-
ysis, Sadowski et al. described a partial verification of some
properties of the Velodrome dynamic atomicity checker [48].
They reasoned at the specification level using trace-based
semantics, and thus did not verify implementations.

Efficient Race Detection. Much prior work has focused on
static [1–3, 8, 15, 17, 26, 38, 56] and dynamic [4, 11, 14, 16,
30, 39, 41–43, 49–52, 55, 60] data race detection.
FastTrack introduced epochs to reduce the overhead of

precise dynamic tools using vector clocks to represent the
happens-before relation [14, 36, 42]. Another well-studied
approach to reduce overhead is using a single shadow lo-
cation for whole arrays and objects [7, 10, 19, 40, 42, 55],
although this may generate false alarms, motivating addi-
tional technology to distinguish real races [9, 17].

Other work has focused on shadow state compression [53,
58] and check buffering or redundancy elimination tech-
niques [29, 51]. In other recent work, we explored static
shadow compression in conjunction with analyses to re-
duce the number of checks performed by a race detector
without impacting precision [22, 44]. A number of such ap-
proaches are based on extensions to the FastTrack anal-
ysis. VerifiedFT complements that work by providing a
high-performance implementation with strong correctness
guarantees upon which these other systems can be built.
Another complementary approach for reducing overhead is
sampling [6, 16, 18], again with some loss of soundness.
Eraser verifies race freedom only for data that is thread-

local, read-shared, or lock protected [49], and has been ex-
tended to produce fewer false alarms [9, 17, 40, 59]. Many
other imprecise analyses, some of which have been widely
used, have been developed as well. Checkers in this category
include ThreadSanitizer [51, 52, 54], Intel Inspector [30, 31],
and Archer [4], which utilizes ThreadSanitizer in conjunc-
tion with static and dynamic analyses specially designed for
OpenMP programs.

10 Summary
VerifiedFT provides a simpler and mechanically-verified
race detection algorithm with performance comparable to
existing highly-tuned but complex and hard-to-maintain
alternatives. Our work leverages several key program verifi-
cation techniques, many of which are embodied in the CIVL
verifier, and it may serve as a starting point for further work
on developing, specifying, and verifying the correctness of
high-performance concurrent algorithms.

VerifiedFT for Java is available as part of the RoadRunner
Analysis Framework distribution, version 0.5.

Acknowledgments
We thank Shaz Qadeer for his assistance with CIVL, and
the anonymous reviewers and our shepherd Murali Krishna
Ramanathan for their feedback and assistance. This work
was supported, in part, by NSF Grants 1337278, 1421051,
1421016, and 1439042.

References
[1] Martín Abadi, Cormac Flanagan, and Stephen N. Freund. 2006. Types

for Safe Locking: Static Race Detection for Java. Transactions on
Programming Languages and Systems 28, 2 (2006), 207–255.

[2] Rahul Agarwal and Scott D. Stoller. 2004. Type Inference for Parame-
terized Race-Free Java. In VMCAI. 149–160.

[3] Alexander Aiken and David Gay. 1998. Barrier Inference. In POPL.
243–354.

[4] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H.
Ahn, Ignacio Laguna, Martin Schulz, Gregory L. Lee, Joachim Protze,
and Matthias S. Müller. 2016. ARCHER: Effectively Spotting Data
Races in Large OpenMP Applications. In IPDPS. 53–62.

[5] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

VerifiedFT PPoPP ’18, February 24–28, 2018, Vienna, Austria

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosk-
ing, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and
BenWiedermann. 2006. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA. 169–190.

[6] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010.
PACER: proportional detection of data races. In PLDI. 255–268.

[7] Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang,
Meisam Fathi Salmi, Swarnendu Biswas, Aritra Sengupta, and Jipeng
Huang. 2013. OCTET: capturing and controlling cross-thread depen-
dences efficiently. In OOPSLA. 693–712.

[8] Chandrasekhar Boyapati and Martin Rinard. 2001. A parameterized
type system for race-free Java programs. In OOPSLA. 56–69.

[9] Cardelli, L. 1984. A Semantics of Multiple Inheritance. In Semantics of
Data Types (Lecture Notes in Computer Science 173). Springer Verlag,
Berlin.

[10] Chiyan Chen and Hongwei Xi. 2005. Combining programming with
theorem proving. In ICFP. 66–77.

[11] Mark Christiaens and Koenraad De Bosschere. 2001. TRaDe: Data
Race Detection for Java. In International Conference on Computational
Science. 761–770.

[12] CIVL Distribution 2017. (2017). https://github.com/boogie-org/boogie

[13] Cormac Flanagan and Stephen N. Freund and James R. Wilcox
2017. VerifiedFT CIVL Implementation. (2017). https://github.com/

boogie-org/boogie/blob/civl/Test/civl/verified-ft.bpl

[14] DRD: a thread error detector 2014. (2014). http://valgrind.org/docs/
manual/drd-manual.html

[15] Matthew B. Dwyer and Lori A. Clarke. 1994. Data Flow Analysis
for Verifying Properties of Concurrent Programs. Technical Report 94-
045. Department of Computer Science, University of Massachusetts at
Amherst.

[16] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and
Hans-Juergen Boehm. 2012. IFRit: interference-free regions for dy-
namic data-race detection. In OOPSLA. 467–484.

[17] Dawson R. Engler and Ken Ashcraft. 2003. RacerX: Effective, static
detection of race conditions and deadlocks. In SOSP.

[18] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. 2010. Effective Data-Race Detection for the Kernel. In OSDI.
151–162.

[19] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient
and precise dynamic race detection. In PLDI. 121–133.

[20] Cormac Flanagan and Stephen N. Freund. 2010. FastTrack: efficient
and precise dynamic race detection. Commun. ACM 53, 11 (2010),
93–101.

[21] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner
dynamic analysis framework for concurrent programs. In PASTE. 1–8.

[22] Cormac Flanagan and Stephen N. Freund. 2013. RedCard: Redundant
Check Elimination for Dynamic Race Detectors. In ECOOP. 255–280.

[23] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer.
2008. Types for atomicity: Static checking and inference for Java. ACM
Trans. Program. Lang. Syst. 30, 4 (2008).

[24] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2004. Exploit-
ing purity for atomicity. In ISSTA. 221–231.

[25] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2005. Ex-
ploiting Purity for Atomicity. IEEE Trans. Software Eng. 31, 4 (2005),
275–291.

[26] Dan Grossman. 2003. Type-Safe Multithreading in Cyclone. In Pro-
ceedings of the ACM Workshop on Types in Language Design and Imple-
mentation. 13–25.

[27] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015.
Automated and Modular Refinement Reasoning for Concurrent Pro-
grams. In CAV. 449–465.

[28] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015.
Automated and Modular Refinement Reasoning for Concurrent Programs.

Technical Report MSR-TR-2015-8. Microsoft Research.
[29] Jeff Huang and Arun K. Rajagopalan. 2017. What’s the Optimal Per-

formance of Precise Dynamic Race Detection? - A Redundancy Per-
spective. In ECOOP. 15:1–15:22.

[30] Intel. 2018. Intel Inspector. (2018). http://software.intel.com/en-us/

intel-inspector-xe

[31] Intel. 2018. Intel Inspector Issues and Limita-
tions. (2018). http://software.intel.com/en-us/

intel-inspector-2018-release-notes-issues-and-limitations

[32] Java Grande Forum. 2017. Java Grande Benchmark Suite.
(2017). http://www2.epcc.ed.ac.uk/computing/research_activities/

jomp/grande.html

[33] Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of
Parallel Programs. Commun. ACM 18, 12 (1975), 717–721.

[34] WilliamMansky, Yuanfeng Peng, Steve Zdancewic, and JosephDevietti.
2017. Verifying dynamic race detection. In Conference on Certified
Programs and Proofs. 151–163.

[35] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java
memory model. In POPL. 378–391.

[36] Friedemann Mattern. 1988. Virtual Time and Global States of Dis-
tributed Systems. In Workshop on Parallel and Distributed Algorithms.

[37] The Coq development team. 2017. The Coq Reference Manual, version
8.6. http://coq.inria.fr

[38] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race
Detection for Java. In PLDI. 308–319.

[39] Hiroyasu Nishiyama. 2004. Detecting Data Races Using Dynamic
Escape Analysis Based on Read Barrier. In Virtual Machine Research
and Technology Symposium. 127–138.

[40] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data
Race Detection. In PPOPP. 167–178.

[41] Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby.
2012. Race detection for web applications. In PLDI. 251–262.

[42] Eli Pozniansky and Assaf Schuster. 2007. MultiRace: Efficient on-the-
fly data race detection in multithreaded C++ programs. Concurrency
and Computation: Practice and Experience 19, 3 (2007), 327–340.

[43] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, and
Eran Yahav. 2012. Scalable and precise dynamic datarace detection for
structured parallelism. In PLDI. 531–542.

[44] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. Big-
Foot: Static check placement for dynamic race detection. In PLDI.
141–156.

[45] RoadRunner Team. 2016. RoadRunner Analysis Framework, Ver-
sion 0.4. (2016). https://github.com/stephenfreund/RoadRunner/tree/

618f3ae5a24f702719f6b6c0422fc1a488cf16bf

[46] RoadRunner Team. 2016. RoadRunner GitHub Source Code Commit
54ae0b0. (2016). https://github.com/stephenfreund/RoadRunner/tree/

b1d39a192e6e2330a95408c7e4030f85354ae0b0

[47] RoadRunner Team. 2016. RoadRunner GitHub Source Code Commit
8b2e9a7. (2016). https://github.com/stephenfreund/RoadRunner/tree/

a1f547350e90e7092a21dd1d95b1714528b2e9a7

[48] Caitlin Sadowski, Jaeheon Yi, Kenneth Knowles, and Cormac Flanagan.
2008. Proving correctness of a dynamic atomicity analysis in Coq. In
Workshop on Mechanizing Metatheory, Vol. 8.

[49] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas E. Anderson. 1997. Eraser: A Dynamic Data Race Detector
for Multi-Threaded Programs. TOCS 15, 4 (1997), 391–411.

[50] Edith Schonberg. 1989. On-The-Fly Detection of Access Anomalies. In
PLDI. 285–297.

[51] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-
tizer: Data Race Detection in Practice. In Proceedings of the Workshop
on Binary Instrumentation and Applications. 62–71.

[52] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov,
and Dmitriy Vyukov. 2011. Dynamic Race Detection with LLVM
Compiler - Compile-Time Instrumentation for ThreadSanitizer. In RV.

https://github.com/boogie-org/boogie
https://github.com/boogie-org/boogie/blob/civl/Test/civl/verified-ft.bpl
https://github.com/boogie-org/boogie/blob/civl/Test/civl/verified-ft.bpl
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-2018-release-notes-issues-and-limitations
http://software.intel.com/en-us/intel-inspector-2018-release-notes-issues-and-limitations
http://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
http://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
http://coq.inria.fr
https://github.com/stephenfreund/RoadRunner/tree/618f3ae5a24f702719f6b6c0422fc1a488cf16bf
https://github.com/stephenfreund/RoadRunner/tree/618f3ae5a24f702719f6b6c0422fc1a488cf16bf
https://github.com/stephenfreund/RoadRunner/tree/b1d39a192e6e2330a95408c7e4030f85354ae0b0
https://github.com/stephenfreund/RoadRunner/tree/b1d39a192e6e2330a95408c7e4030f85354ae0b0
https://github.com/stephenfreund/RoadRunner/tree/a1f547350e90e7092a21dd1d95b1714528b2e9a7
https://github.com/stephenfreund/RoadRunner/tree/a1f547350e90e7092a21dd1d95b1714528b2e9a7

PPoPP ’18, February 24–28, 2018, Vienna, Austria James R. Wilcox, Cormac Flanagan, and Stephen N. Freund

110–114.
[53] Young Wn Song and Yann-Hang Lee. 2014. Efficient Data Race Detec-

tion for C/C++ Programs Using Dynamic Granularity. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. 679–688.

[54] ThreadSanitizer 2018. ThreadSanitizer. (2018). http://clang.llvm.org/

docs/ThreadSanitizer.html

[55] Christoph von Praun and Thomas Gross. 2001. Object Race Detection.
In OOPSLA. 70–82.

[56] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static
race detection on millions of lines of code. In FSE. 205–214.

[57] Liqiang Wang and Scott D. Stoller. 2005. Static analysis of atomicity
for programs with non-blocking synchronization. In PPOPP. 61–71.

[58] James R. Wilcox, Parker Finch, Cormac Flanagan, and Stephen N.
Freund. 2015. Array Shadow State Compression for Precise Dynamic
Race Detection. In ASE. 155–165.

[59] Xinwei Xie and Jingling Xue. 2011. Acculock: Accurate and efficient
detection of data races. In CGO. 201–212.

[60] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient
detection of data race conditions via adaptive tracking. In SOSP. 221–
234.

http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 VerifiedFT Analysis
	4 Idealized Implementation, Version 1
	5 Idealized Implementation, Version 2
	6 Verifying VerifiedFT in CIVL
	7 VerifiedFT Implementation for Java
	8 Experimental Validation
	9 Related Work
	10 Summary
	Acknowledgments
	References

