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Abstract

We explore a new technique for e�cient dynamic race detection on programs using
arrays intensively. Standard techniques lead to redundant operations and redundant
representations in many common cases. For these common cases, we design dynamic
compression methods that eliminate this redundancy. Finally, we implement our
techniques in a prototype tool called ShrinkWrap, which is built as an extension
to a state-of-the-art precise dynamic race detector. We evaluate the performance and
precision of ShrinkWrap on a suite of benchmark programs.

We show that our prototype can improve performance dramatically when the
target program accesses arrays in a pattern we recognize. The vast majority of the
accesses that must be checked by the underlying race detector can be eliminated on
almost half of our benchmark programs. However, we also �nd that our prototype
is not always as time e�cient as one might expect given the number of accesses
eliminated.
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Chapter 1

Introduction

The general-purpose computer market, from servers to tablets, is now dominated by

systems that employ multicore processors, which have the ability to execute several

instructions at once. This power sits idle unless operating systems and applications

are written with concurrency in mind. Unfortunately, multithreaded and concurrent

programming is inherently harder than its sequential counterpart because threads

running concurrently may interact in unanticipated ways. In particular, concurrent

programs can su�er from race conditions, which occur when two or more threads

access and modify data at the same time without proper synchronization. These

races lead to errors which depend on the relative timing of when threads execute the

accesses. Since the threads do not properly synchronize, there is no guarantee that

the same relative order of operations is used when the program is run multiple times.

Thus, these bugs may manifest only occasionally, making them surprising, hard to

diagnose, and hard to eliminate.

Because these bugs are so di�cult to detect and eliminate, many techniques have

been designed to detect them automatically. Static analyses examine the source code

of the target program o�ine and attempt to prove that no races occur on any input

to the program [1, 14]. These static techniques provide absolute guarantees of race

freedom, but they are inherently conservative and thus produce many false positives

on real-world programs. On the other hand, dynamic analyses monitor programs as

they run and report any race conditions that occur [7, 11]. Dynamic techniques can

be precise, reporting no false positives while reporting all real errors that occur on the

observed execution. However, dynamic analyses only reason about a single input to

the program, so they give no guarantees about the program when it is run on other
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inputs. Although they provide weaker guarantees, dynamic analyses are the most

promising direction forward, given the imprecision of even the best static analyses.

Dynamic race detectors also slow down the target program because they perform

extra checking to detect race conditions. Detectors incur two types of overhead. First,

the checks performed by the detector take time that could have otherwise been used by

the target program. Second, for each memory location used by the program, the race

detector must keep extra state. State-of-the-art techniques can lead to slow-downs

of 5-10 times the unmonitored running time and memory overhead of 2-4 times the

unmonitored space [7].

The standard technique for handling arrays in dynamic detectors is to treat each

element independently of the others. Under this approach, programs using large ar-

rays intensively are especially susceptible to massive overhead because the detector

allocates state for each element of the array individually. This can easily cause a

program's memory requirements to exceed the maximum available memory on the

system, meaning that race detection cannot be used. Even when analysis is possi-

ble, the additional state may still lead to degraded cache and memory performance,

especially when the target program has been engineered to take advantage of caching.

1.1 Contributions

The goal of this thesis is to reduce the overhead of race detection on array-intensive

programs. Although overhead is unavoidable in general, there is potential to mitigate

it much of the time by exploiting a key insight: many threads access arrays in easy-

to-describe patterns such as �touches every other element of the array.� By reasoning

about these patterns, instead of considering each access individually, we can improve

the e�ciency of a detector. In order to be useful for race detection, these patterns

must have the additional property that their elements are accessed without interven-

ing synchronization. This ensures that no precision is lost if we treat all elements

captured by a pattern as a single �abstract� element inside the detector and allocate

only one state to represent the entire access pattern. It also allows us to perform only

one check to determine whether any elements of a pattern were involved in a race.

The contributions of this thesis are as follows.

• We identify several common patterns in how programs access arrays and show

how these patterns lead to redundancy in modern dynamic race detectors.
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• We design an analysis that augments any precise dynamic race detector, elim-

inating the redundancy discussed above. We formalize the analysis and prove

that it retains precision.

• We implement the analysis in the tool ShrinkWrap.

• We evaluate ShrinkWrap on a suite of benchmark programs and present per-

formance data. We �nd that ShrinkWrap is able to eliminate the vast ma-

jority of accesses that must be checked for race conditions.

• Finally, we provide some directions for future work, as well as re�ecting on the

overall insights gained throughout this work.

1.2 Overview

Chapter 2 introduces race conditions and reviews the literature on detecting

race conditions. We use the happens-before relation to precisely de�ne race con-

ditions and as a conceptual framework for comparing di�erent race detectors [11].

We also introduce vector clocks as an e�cient way of performing happens-before

queries [12].

Chapter 3 designs a simple description of access patterns that are common in

practice. We discuss the properties required of these patterns in order to be

useful for optimizing race detection. We also show how to use the patterns to

compress state and eliminate redundant checks.

Chapter 4 gives the details of our analysis. We show how to optimize a given

race detection algorithm for array-intensive programs using our patterned access

analysis, including both compression and redundancy elimination. We also prove

that the optimization is correct with respect to the underlying algorithm, in the

sense that our analysis misses no new races and introduces no new false positives.

Chapter 5 presents and evaluates our implementation, ShrinkWrap, which

is an optimized version of FastTrack that uses the ideas from Chapters 3

and 4. We also validate the implementation on a set of benchmark programs

and present the results. We point out programs with access patterns that can be

well-described by our technique. We also consider programs that have patterns
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to their accesses that we cannot capture, as well as programs whose accesses are

random.

Chapter 6 draws conclusions and proposes several ideas for future work.



Chapter 2

Background

In this chapter, we study race conditions and their detection by program analysis.

Section 2.1 introduces and de�nes race conditions over traces in terms of the happens-

before relation. Section 2.2 reviews the large body of work that exists on detecting

race conditions. Finally, Section 2.3 discusses previous techniques for detecting races

in programs that use arrays.

2.1 Race Conditions

Multithreaded programs are prone to a wider class of bugs than their sequential

counterparts. In particular, multithreaded programs su�er from race conditions. An

execution of a multithreaded program can thought of as an interleaving of operations

from each thread. This interleaving can change from execution to execution due to the

realities of modern multicore machines and their operating systems. Intuitively, a race

occurs when two operations accessing the same variable could have been interleaved

in a di�erent order, where at least one operation is a write.

Race conditions are especially problematic because they can be di�cult to repro-

duce, detect, and eliminate. Some races may occur only on rare interleavings, thus a

program with races may behave correctly much of the time, for example during test-

ing, but then fail when the rare case happens after deployment. A race-free program

uses synchronization to force the desired order of operations between threads.1 Even

1It is important to note that a program without race conditions is not necessarily correct, due to

the presence of other errors, but we focus on the elimination of races in this thesis. See Example 2.5

for a race-free program that still has concurrency errors.

9
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Thread 1 Thread 2
1 t1 = x t2 = x

2 t1 = t1 + 1 t2 = t2 + 1

3 x = t1 x = t2

Figure 2.1: Incrementing program with race conditions. The shared variable x can
be incremented once or twice depending on the interleaving of operations from each
thread.

once the presence of a race condition has been detected, it is notoriously di�cult to

correct the error without introducing further concurrency bugs, because of the large

number of possible interleavings that must be considered. These hazards make tools

to detect race conditions extremely useful. For example, race detectors can be used

to con�rm that races have been eliminated. The development of such tools has been

an active subject of research for some time, and we review the relevant work in this

area in Section 2.2.

Before de�ning race conditions formally, we present a small example program that

su�ers from race conditions.

Example 2.1 (Simple Race Condition: Broken Increment). Consider the pro-

gram in Figure 2.1.2 Here, two threads attempt to increment the shared variable x

without proper synchronization. If line 1 executes in both threads before line 3 exe-

cutes in either thread, only one of the increments will be recorded on x. We will show

below that our formal de�nition of a race condition identi�es this (rather trivial) case.

We'll also see a few ways to add synchronization to eliminate the race condition, as

well as some more substantial examples.

Operations, Traces, and the Happens-Before Relation

In this section, we will re�ne the intuition given above into a precise de�nition of race

conditions in terms of the happens-before relation on a trace. First, we introduce a

simple set of operations su�cient to study race detection. Next, we introduce traces,

which capture a particular interleaving of operations for a program. We then de�ne

a race on a trace as a pair of concurrent, con�icting accesses. Finally, we de�ne

2In this example and for the rest of this chapter, we will use the notation of Figure 2.1 without

de�nition. Programs written in this way are not part of the formalism studied below, since traces

contain only the abstract operations listed in Table 2.1. Instead, these programs are meant to make

clear the goal of each program, before diving into its traces.
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Operation Description
rd(t,x) thread t reads from memory location x

wr(t,x) thread t writes to memory location x

acq(t,m) thread t acquires a lock m

rel(t,m) thread t releases a lock m

Table 2.1: List of program operations relevant to race detection.

the happens-before relation over a trace, which formalizes the notion of concurrency.

Throughout this section, we use the program from Example 2.1 to illustrate each

concept. We also consider two ways of eliminating that program's race conditions.

Operations. When studying data race detection techniques, many of the details

of the computation performed by program can be ignored. Thus, in this discussion,

we consider only the operations listed in Table 2.1. This list does not exhaustively

represent the synchronization idioms used in practice; however, it is straightforward

to extend our discussion to other synchronization operations, such as fork-join and

volatile accesses.

Traces and Races. A particular execution of a program de�nes a trace, which

records an interleaving of operations from each thread that is consistent with that

execution. A trace contains a race condition if it contains a pair of concurrent, con-

�icting accesses. Accesses are con�icting if both accesses refer to the same memory

location and at least one of them writes to that location. A pair of accesses is concur-

rent if, given su�cient resources, they could happen at the same time. More formally,

accesses are concurrent if they are not ordered by the happens-before relation, which

we de�ne and discuss below.

Example 2.2 (Traces of Broken Increment). We have already mentioned that

many computational aspects of target programs can be ignored. In Example 2.1, line

2 in each thread may be ignored if we do not consider the temporary variables to be

shared memory locations. With this in mind, we can list the operations each thread

of the program will perform.

Thread 1 Thread 2

rd(1,x) rd(2,x)

wr(1,x) wr(2,x)
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Trace A:

Thread 1 Thread 2

rd(1,x)

wr(1,x)

rd(2,x)

wr(2,x)

Trace B:

Thread 1 Thread 2

rd(1,x)

rd(2,x)

wr(1,x)

wr(2,x)

Trace C:

Thread 1 Thread 2

rd(1,x)

rd(2,x)

wr(2,x)

wr(1,x)

Figure 2.2: Three traces for the program from Example 2.1.

There can be many traces for a given program, and in general, there will be expo-

nentially many in the length of the program. For this short program, it isn't to hard

to enumerate all of them, but for brevity we give just a few representative examples

in Figure 2.2.

Notice that the correct (twice-incremented) value of x is computed in trace A

since thread 2's read operation occurs later than thread 1's write. However traces

B and C were not so lucky; they both compute the incorrect (once-incremented)

value. The fact that some traces compute the correct value can make discovering

race conditions during testing di�cult, especially since some traces may occur rarely,

if at all. Adequate testing thus requires extremely careful exploration of the space of

possible traces.

The Happens-Before Relation. Given a trace α, the happens-before relation,

denoted ≺α, is a partial order on operations in α. We will de�ne ≺α by specifying

some pairs of operations that induce happens-before order in the trace and then

requiring that the relation be transitively closed.
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rd(1,x)

wr(1,x)

rd(2,x)

wr(2,x)

Figure 2.3: Happens-before relation for all three traces from Example 2.2 and Fig-
ure 2.2. Two operations are ordered by happens-before if and only if there is a directed
path from one to the other in the �gure. Since there are no synchronization operations
in the program, the happen-before order is just the program order.

Program Order. Pairs of operations that occur in the same thread always hap-

pen in a trace in the order speci�ed by the programmer, and we say that such

operations are ordered in the happens-before relation by the program order.

Synchronization Order. Within any trace, a release operation on a lock fol-

lowed by an acquire operation on the same lock by another thread can not appear

in the opposite order, since a thread cannot acquire a lock that is already held.

We say that these operations are ordered by the synchronization order.3

Finally, we de�ne ≺α to be the transitive closure of the union of the program order

and the synchronization order. Note that this relation is not re�exive.

Example 2.3 (Happens-Before Relation for Broken Increment). Now let us

consider the happens-before relation for each of the traces from Example 2.2. We can

represent the happens-before relation graphically as in Figure 2.3.

In all three cases, the program order is the same: the write in each thread follows

the read in that thread. Furthermore, there are no synchronization operations, so

the synchronization order is empty. Thus the happens-before ordering of operations

in this program is simply what is induced by the program ordering of each thread.

In particular the happens-before relation is the same for all three traces. Since no

operation in one thread is related by the program order to an operation in another

thread, the same holds for the happens-before relation. Because the relative order of

wr(1,x) and any access to x in thread 2 is not determined, there is the potential to

compute inconsistent values. In other words, the program has race conditions. Note

that con�icting accesses involve a write operation.

3If we had considered additional synchronization primitives, they would also contribute to the

synchronization order. For example, a fork operation happens before the �rst operation of any

thread it creates, and a join happens after the last operation of any thread it waits for.
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Thread 1: Thread 2:

1 acquire m acquire m

2 t1 = x t2 = x

3 t1 = t1 + 1 t2 = t2 + 1

4 x = t1 x = t2

5 release m release m

Figure 2.4: Race-free version of program from Figure 2.1.

The happens-before relation exposes a race in trace A, even though the correct

value was computed. Indeed, it turns out that every possible trace of this program

has a race that will be exposed by the happens-before relation. This robustness

to changes in the trace is an important advantage of happens-before analysis over

testing-based approaches.

Race-Free Programs. We will now give two ways to modify the program from

Example 2.1 so that it is race free. We have seen that the program su�ered from race

conditions because there were no synchronization operations in the program, and thus

no synchronization order contributions to the happens-before order. To remedy this,

we must add synchronization and ensure the relative order of writes in one thread

with accesses in another is consistent.

Example 2.4 (Correct Increment Program). Thinking about what goes wrong in

traces that compute the once-incremented value, we realize that each thread assumes

the value of x remains constant between the read and the write, but this assumption

was not enforced by the (lack of) synchronization in the program. We can prevent

multiple threads from accessing x at once by protecting each increment operation

with a lock, say m. This leads to the program in Figure 2.4.

Since one thread will acquire the lock before the other and then run uninterrupted

until the release, the two increments of x are serialized, as desired. The two possible

traces of this program are recorded in Figure 2.5, and the happens-before relation for

trace A is depicted in Figure 2.6.

Example 2.5 (Race-free, Incorrect Increment Program). We now consider

another way of modifying the increment program to eliminate race conditions. In the

�rst race-free version from Example 2.4, the locking has prevented the two threads

from running in parallel. Wishing to restore as much of this parallelism as possible,

we can bring the addition operations outside the locked sections, yielding the program



2.1. RACE CONDITIONS 15

Trace A: Trace B:

Thread 1 Thread 2 Thread 1 Thread 2

acq(1,m) acq(2,m)

rd(1,x) rd(2,x)

wr(1,x) wr(2,x)

rel(1,m) rel(2,m)

acq(2,m) acq(1,m)

rd(2,x) rd(1,x)

wr(2,x) wr(1,x)

rel(2,m) rel(1,m)

Figure 2.5: The two possible traces for the program from Figure 2.4.

acq(1,m)

rd(1,x)

wr(1,x)

rel(1,m)

acq(2,m)

rd(2,x)

wr(2,x)

rel(2,m)

Figure 2.6: The happens-before relation for trace A from Figure 2.5. Edges from the
program order are solid, while edges from the synchronization order are dashed. As
before, operations are ordered by the happens-before relation if and only if there is
a directed path from one to the other. In this case, all pairs of distinct operations
are ordered. In particular, no access to x from one thread is concurrent with a write
from another thread; there are no races.

in Figure 2.7. Consider any trace of this program. It is not di�cult to see that all

accesses to x are ordered by the happens-before relation: whichever thread acquires

m �rst must complete its access while the other thread waits or increments.

We should now ask ourselves whether this program is correct? Certainly, there

are no longer any race conditions, but consider the trace in Figure 2.8. For this trace,
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Thread 1: Thread 2:

1 acquire m acquire m

2 t1 = x t2 = x

3 release m release m

4 t1 = t1 + 1 t2 = t2 + 1

5 acquire m acquire m

6 x = t1 x = t2

7 release m release m

Figure 2.7: Race-free, incorrect increment program, whose synchronization prevents
races but still allows bad interleavings, like the one in Figure 2.8.

Thread 1 Thread 2

acq(1,m)

rd(1,x)

rel(1,m)

acq(2,m)

rd(2,x)

rel(2,m)

acq(1,m)

wr(1,x)

rel(1,m)

acq(2,m)

wr(2,x)

rel(2,m)

Figure 2.8: Trace of program from Figure 2.7 that computes the wrong value.

only one increment will be applied because both reads happened before either write.

The moral here is that lack of race conditions does not imply lack of concurrency

bugs.

In the next section, we will review several algorithms for detecting race conditions

in programs. The happens-before relation is a useful tool for understanding these

analyses, even when the algorithms in question do not explicitly use it.

2.2 Race Detection

This section brie�y reviews the literature on race detection. We �rst discuss program

analysis in general, including goals and design tradeo�s. Then we review in some

detail several state-of-the-art algorithms that have been proposed to detect race con-
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ditions in programs. Finally, we introduce a simple dynamic analysis based on vector

clocks, which will serve as the prototypical algorithm to be optimized in later chapters.

Program Analysis

A program analysis computes some property of its target program. Such analyses can

be used to identify opportunities for optimization or to enforce correctness. Program

analyses inhabit a large design space, where many techniques are used and tradeo�s

are made, all of which impact the precision, performance, and usability of the analysis.

We now review a few of the most important design choices with an eye towards

analyses that enforce correctness.

Static vs. Dynamic. Static analyses process the source code of the target pro-

gram and are inherently conservative because of the undecidability of the prob-

lems they solve. On the other hand, dynamic analyses observe the target program

as it runs, and so they only reason about the execution of the program on a par-

ticular input, rather than in general. To be useful, dynamic analyses must be

applied to enough di�erent inputs so that many of the code paths are exercised.

This is analogous to the problem of adequate coverage in a test suite.

Soundness and false negatives. An analysis produces a false negative if it

marks an erroneous operation as correct. An analysis that is guaranteed to

never produce false negatives is sound. For example, if an analysis accepted a

program with races as race free, then it would not be sound. For static analyses,

erroneous means that there is some input that would cause the error, while for

dynamic analyses, erroneous simply means that the error occurred on this input.

Completeness and false positives. An analysis produces a false positive if it

marks an operation as erroneous even though the operation was in fact correct.

An analysis that is guaranteed to never produce false positives is complete. For

example, if an analysis rejected a race-free program as having a race condition,

then the analysis would not be complete. As above, a static analysis must ana-

lyze correctness with respect to all possible inputs, while dynamic analyses are

restricted to the current input.

We say that a dynamic analysis is precise if it is sound and complete as described

above. Note that precise static analysis is undecidable.
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Race Detection Algorithms

At a high level, race detectors seek to �nd race conditions: pairs of concurrent, con-

�icting accesses. To do so, they must reason about the happens-before relation in

some way. The precision and performance of the algorithm greatly depends on how it

represents the happens-before relation. Maintaining enough information to determine

whether two arbitrary operations in a trace are ordered by the happens-before rela-

tion is prohibitively expensive, so analyses typically approximate the happens-before

relation in some way.

Static Analyses. Static analyses use inherently imprecise approximations to the

happens-before relation because the problem is undecidable in general.

Chord seeks to soundly report all pairs of memory accesses that may be involved

in a race [14]. To this end, it initially computes a simple over-approximation to the

set of such pairs that rules out those pairs that access �elds of di�erent types. Chord

then re�nes this approximation with further analysis, including an alias analysis and

an analysis designed to take advantage of Java's lexically scoped locking idiom. For

soundness, Chord additionally employs a new form of alias analysis, conditional must-

not-alias analysis, which seeks to prove that two locations are not aliased given that

two other locations are not aliased. For example, the analysis can easily prove that

the locations x.f and y.f are distinct given that locations x and y are distinct [13].

After further analysis, any remaining pairs are reported as potential races to the user.

Rcc/Java is a type system for Java that is designed so that well-typed programs

are race free. Like Chord, Rcc/Java is sound. The type system tracks the set of locks

known to be held at each program point and checks that the proper locks are held on

each access. Early work required annotations specifying which �elds required which

locks [4], and later improvements developed algorithms to infer these annotations [5].

Program points that do not pass the required locking check cannot be typed, and the

system reports an error. One advantage of a type system approach is that methods

can be analyzed independently, supporting modularity. On the other hand, the system

only supports lock-based synchronization and will report false positives on programs

written with other idioms.

RacerX checks C programs for races using a static lockset analysis. In contrast

to the two analyses above, RacerX is neither sound nor complete, instead focusing

on scalability and usability issues. It approximates the set of locks held using a
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context-sensitive, path-insensitive algorithm to add and remove locks when certain

user-declared functions are called. The problem is made harder since C does not have

lexically-scoped locking. RacerX also uses advanced �ltering and sorting techniques,

trading false negatives for fewer false positives. Its main advantage is scalability, as

it is able to run on systems as large as the Linux kernel. Its �ltering techniques also

strive to make a system that is useful, rather than one of only theoretical interest.

However, it is not able to provide the same guarantees as the systems above, since

there may be further races even when none are reported.

Dynamic Analyses. We begin with some terminology. Dynamic analyses typically

associate extra state to each memory location used by the program. We refer to this

state as the shadow state for the program. When emphasizing the distinction between

the analysis and the program being analyzed, we may refer to the program being

analyzed as the target program.

We can categorize dynamic analyses by how the represent the happens-before rela-

tion. Broadly speaking, an analysis can use either a direct or indirect representation.

Direct Representation via Vector Clocks. Analyses may check the order-

ing of accesses by storing vector clocks [12] for each thread, lock, and memory

location. This approach exploits the fact that once races have been ruled out on

a particular operation, we no longer need to be able to answer happens-before

queries for that operation. Keeping clocks relevant to all recent operations by

threads retains full precision, but because vector clock operations scale linearly

in the number of threads, an analysis that performs many such operations will

be slow.

Indirect Representation via Locksets. Analyses may trade o� precision for

speed by using an indirect approximation to the happens-before relation. For

example, the lockset algorithm checks that con�icting accesses are guarded by a

common lock. This is su�cient, but not necessary, for race freedom.

We describe all of these analyses in more detail below.

Lockset-based dynamic race detectors such as Eraser [17] keep track of the set

of locks currently held by each thread and check that a consistent locking discipline
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is used across threads. This approach depends on a locking synchronization disci-

pline and is not easily extended to other synchronization idioms [17], though Race-

Track [20], discussed below, can be viewed as such an extension. Lockset approaches

tend to report many false positives but can be implemented e�ciently.

Happens-before�based dynamic race detectors such asDjit+ and FastTrack use

vector clocks to precisely track the happens-before relation [9, 7]. A vector clock is a

data structure that stores a time for each thread in the program. Each thread typically

keeps a vector clock containing the most recent value for each other threads' clock.

Relative timing of operations in di�erent threads can be determined by comparing

vector clocks point-wise. Vector clocks are discussed in more detail in Section 2.2.

By using the happens-before relation explicitly, these detectors are easy to extend

to other synchronization idioms. Vector clocks require space linear in the number of

threads, and so operations on vector clocks are relatively expensive. Thus happens-

before detectors must be carefully optimized to avoid vector clock operations wherever

possible. For example, a Java implementation of Djit+ required vector clock oper-

ations on 20-30% of accesses, while a comparable implementation of FastTrack

reduces this to 0.1% of accesses. However, even FastTrack slowed a suite of bench-

mark programs down by a factor of 8 [7].

Hybrid Approaches. Some analyses combine multiple approaches. O'Callahan

and Choi [15] mix the performance of lockset algorithms with the precision of happens-

before detectors. Their tool initially uses a lockset algorithm as a fast but imprecise

approximation that can detect which parts of the program should be analyzed more

precisely (and at higher cost) using a happens-before detector. This approach is

nearly as e�cient as standard lockset analyses, while only missing a few races as

compared to the happens-before detector it uses. These missed races stem from the

two-phase approach. For example, if a program contains a single race that is caught

by the lockset algorithm, it may not be reported because the happens-before tool

would never see another race. MultiRace [16] is a similar technique that combines

happens-before and lockset techniques.

RaceTrack [20] also leverages lockset and happens-before analysis to achieve per-

formance and precision. In its most precise state, RaceTrack keeps a set of threads

that are currently accessing each memory location. As this is expensive in general, it

optimizes several common cases, including thread-local and read-shared data, which
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were later exploited by FastTrack, as well. RaceTrack is neither sound nor com-

plete. It is incomplete because it reports races to the user that were �agged by the

lockset algorithm, which cannot handle non-locking synchronization idioms. It is un-

sound because it resets some locksets to empty when one thread believes it is the

only thread to access that memory location. Using close integration with the VM

and careful optimization, RaceTrack slows its target program down by a factor of

only 1.3, while its memory overhead is only a factor of 1.2, and the authors reported

that they were �unable to �nd comparative numbers in the literature.�

Vector Clocks and Happens-Before-Based Detection

Vector clocks allow relatively-e�cient tracking of the happens-before relation. They

are used by state-of-the-art precise dynamic race detectors, and are used as part of

the main analysis studied in this work.

A vector clock is a vector of clocks. More formally, a vector clock v ∈ VC is a

map Tid → Nat from thread identi�ers to the natural numbers, representing clock

values for each thread. A vector clock captures the relative ordering of operations

from di�erent threads. This relative order is given by a partial order over vector

clocks, de�ned by comparing each component. More precisely, given vector clocks v

and w, we say v v w if v(t) ≤ w(t) for all thread ids t. This partial order has a

corresponding join operation, which is given by (vtw)(t) = max(v(t), w(t)). Finally,

several operations need to advance a given entry in a vector clock, which is the purpose

of the function inct.

inct : VC → VC

inct(v) = v[t := v(t) + 1]

The notation v[t := k] represents the vector clock that is equal to v at all components

except t, where it is equal to k. Thus inct(v) increments the t component of v.

Example 2.6 (Vector Clocks). In case of two threads, we can write vector clocks

as ordered pairs of numbers. So consider the clocks [1, 0] and [0, 1]. These clocks are

not ordered since they are not ordered component-wise. The join of these clocks is

just [1, 1]. Now consider the clocks [1, 0] and [1, 1]. We have [1, 0] v [1, 1] immediately,

and [1, 0] t [1, 1] = [1, 1].
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t ∈ Tid

c ∈ Tid → VC

l ∈ Lock → VC

x ∈ Mem

r, w ∈ Mem → VC

[VC-Acquire]

c′ = c[t := ct t lm]
(c, l, r, w)→acq(t,m) (c′, l, r, w)

[VC-Release]

l′ = l[m := ct]
c′ = c[t := inct(ct)]

(c, l, r, w)→rel(t,m) (c′, l′, r, w)

[VC-Read]

wx v ct
r′ = r[x := rx[t := ct(t)]]

(c, l, r, w)→rd(t,x) (c, l, r′, w)

[VC-Write]

rx v ct
wx v ct

w′ = w[x := wx[t := ct(t)]]

(c, l, r, w)→wr(t,x) (c, l, r, w′)

Figure 2.9: Formal rules for a simple race detector.

A Simple Race Detector. We now describe a relatively straightforward approach

to race detection using vector clocks to track the happens-before relation. This anal-

ysis is summarized in Figure 2.9.

The analysis keeps a vector clock ct for each thread t, a vector clock lm for each

lock m, and two clocks rx and wx for each memory location x. The t component of

thread t's clock, ct(t), is a local counter of time, while the other components of ct

record the last-observed values of the local counter of every other thread. The clock

lm records the clock of the last thread to release m. The t component of the clocks

rx and wx record the last time that thread t performed a read or write to location x,

respectively.

The clocks are updated as follows.

[VC-Acquire]. Whenever thread t acquires a lock m, the clock ct is set to

ct t lm, which re�ects the guarantee that this acquire happens after the most

recent release of m.
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[VC-Release]. When t releases m, the clock lm is set to ct and then ct(t) is

incremented. The �rst part ensures that any future acquire of m will happen

after this release, while the second part guarantees that any access performed

by t after this release will be correctly detected as racing with accesses by other

threads to the same locations, even if those threads acquire m.

[VC-Read]. Whenever a thread t reads a location x, it veri�es that wx v ct

and sets rx(t) to ct(t). In other words, the read is race free if for every thread u,

t knows at least as recent a value for u's clock as the location x does. Phrased

yet another way, the read is race free if no other thread has written to x after

last communicating with thread t.

[VC-Write]. Whenever a thread t writes a location x, it checks wx v ct and

rx v ct, and then sets wx(t) to ct(t). This is similar to the case for reads, except

that both reads and writes by other threads must be ordered with respect to the

current clock for this thread.

Example 2.7 (Vector Clock State for a Correct Program). We now compute

the state of the vector clocks above for trace A in Figure 2.5 at a few important

program points. We'll continue to write clocks as ordered pairs since there are two

threads: the �rst component represents the value of the clock on thread 1, and the

second for thread 2. Our computations are summarized in Figure 2.10.

There are several clocks to keep track of: c1 and c2 represent the knowledge of

threads 1 and 2 about their time relative to the other; lm stores the clock of the most

recent thread to release it; and rx and wx store the clocks of the most recent threads

to read and write to x.

Initially, all clocks are [0, 0], except c1 = [1, 0] and c2 = [0, 1]. In trace A, thread 1

wins the race to acquire the lock �rst, so we set c1 = [1, 0] t [0, 0] = [1, 0]. Nothing

changes because thread 1 is the �rst thread to synchronize on lock m. Then thread 1

reads and writes x and �nally releases m. Thus we have rx = [1, 0] = wx, lm = [1, 0]

and c1 = [2, 0]. Next, thread 2 acquires m, so c2 = [1, 1]. Then thread 2 processes

x and releases m, after which rx = [1, 1] = wx, lm = [1, 1], and c2 = [1, 2]. This

completes the trace.

Example 2.8 (Correct Program is Race free). Using the table computed at the

end of Example 2.7, we now verify that all accesses in the execution are race free,



24 CHAPTER 2. BACKGROUND

c1 c2 rx wx lm

[1, 0] [0, 1] [0, 0] [0, 0] [0, 0]

[1, 0] [0, 1] [0, 0] [0, 0] [0, 0]

[1, 0] [0, 1] [1, 0] [0, 0] [0, 0]

[1, 0] [0, 1] [1, 0] [1, 0] [0, 0]

[2, 0] [0, 1] [1, 0] [1, 0] [1, 0]

[2, 0] [1, 1] [1, 0] [1, 0] [1, 0]

[2, 0] [1, 1] [1, 1] [1, 0] [1, 0]

[2, 0] [1, 1] [1, 1] [1, 1] [1, 0]

[2, 0] [1, 2] [1, 1] [1, 1] [1, 1]

acq(1,m)

rd(1,x)

wr(1,x)

rel(1,m)

acq(2,m)

rd(2,x)

wr(2,x)

rel(2,m)

Figure 2.10: Illustration of simple race detector on Trace A from Figure 2.5.



2.2. RACE DETECTION 25

c1 c2 rx wx lm

[1, 0] [0, 1] [0, 0] [0, 0] [0, 0]

[1, 0] [0, 1] [1, 0] [0, 0] [0, 0]

[1, 0] [0, 1] [1, 0] [1, 0] [0, 0]

� wx 6v c2 � � �

rd(1,x)

wr(1,x)

rd(2,x)

Figure 2.11: Illustration of simple race detector on the program from Example 2.1,
using Trace A from Figure 2.2. A race is detected on the operation rd(2,x) because
wx 6v c2.

using the above checks. Just before the read by thread 1, we see that wx = [0, 0] v
[1, 0] = c1, and so the read is race-free. Next, for the write by thread 1, we have

rx = [1, 0] v [1, 0] = c1 and wx = [0, 0] v [1, 0] as desired. More interestingly, for

the read by thread 2, we have wx = [1, 0] v [1, 1] = c2. For the �nal write, we have

rx = [1, 1] v [1, 1] = c2 and wx = [1, 0] v [1, 1] = c2. Thus all accesses in the trace

were race free.

Example 2.9 (Program with Races). Going all the way back to Examples 2.1

to 2.3, we now verify that the above analysis catches the races. Our calculations

are summarized in Figure 2.11. Since neither thread performs any synchronization

operations, c1 = [1, 0] and c2 = [0, 1] for the whole program, and we need only worry

about wx and rx. Consider trace A from Example 2.2. After thread 1 reads and writes

to x, we have rx = [1, 0] = wx. When thread 2 reads from x, we check if wx v c2, but

[1, 0] 6v [0, 1] as we saw in Example 2.6, so the race is caught.

E�cient Vector-clock Techniques. Both Djit+ and FastTrack improve on

the straightforward approach sketched above by eliminating vector clock operations

where possible. Djit+ takes advantage of the fact that a thread's clock ct(t) does not

change unless that thread performs a synchronization operation. Thus, if a thread

t accesses location x that it has already accessed since performing its last synchro-

nization operation, Djit+ avoids the vector clock check. Any race on the second
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access would alse be a race on the �rst. This optimization can be implemented for

read operations by checking if wx(t) = ct(t) before performing the full vector clock

comparison wx v ct. FastTrack goes further, exploiting the insight that, for most

memory locations, all accesses are totally ordered. In this case, the full generality of

a vector clock is not necessary, and FastTrack only stores the identity and clock of

the last accessing thread. For example, in the case of writes, FastTrack completely

eliminates the vector clock wx and replaces it by the pair (t, e) where t is the last

thread to write to x and e was the clock ct(t) at the time of the write. A similar

simpli�cation is performed on reads. Races can be detected on an access by thread u

by only checking e ≤ cu(t).

2.3 Race Detection on Arrays

The simple race detector presented in the previous section handles the operations

listed in Table 2.1. In particular, all reads and writes have been to shared (scalar)

variables, but we now consider how to extend the analysis to shared array variables.

To this end, we consider the following additional operations.

a_rd(t,a,i) thread t reads index i of array a

a_wr(t,a,i) thread t writes index i of array a

We now consider how to extend the analysis to check these operations.4 The most

natural approach is to handle each element of the array as a separate memory location,

and apply the analysis �pointwise.� In other words, for each array a, and in-bounds

index i, the analysis keeps two arrays of vector clocks, wa[i] and ra[i]. These are the

shadow state for the analysis, and we refer to them as the shadow arrays. Every read

or write to an array element is checked using these vector clocks, as described by the

scalar read and write rules. We refer to this technique of keeping one vector clock per

array element as the �ne-grained representation, which we abbreviate to �ne mode.

To see how this analysis works on a simple array program, consider Figure 2.12.

Here, each thread of the program acquires a common lock m, then touches every

element of the array a, and then releases m. We show the state kept by the simple

race detector, extended to handle array accesses. The vector clocks c1, c2, and lm

4We describe our work for the simple vector clock algorithm, in order to avoid the complexities

of FastTrack. Our techniques are equally applicable to that algorithm, and we discuss some of

the more interesting details of the extension to FastTrack in Chapter 5.
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Thread 1 Thread 2 a c1 c2 lm wa wopt
a

... 0 0 0 0 [10,0] [0,30] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]

a[0] = 0 0 0 0 0 [10,0] [0,30] [0,0] [10,0] [0,0] [0,0] [0,0] [0,0]

a[1] = 1 0 1 0 0 [10,0] [0,30] [0,0] [10,0] [10,0] [0,0] [0,0] [0,0]

a[2] = 2 0 1 2 0 [10,0] [0,30] [0,0] [10,0] [10,0] [10,0] [0,0] [0,0]

a[3] = 3 0 1 2 3 [10,0] [0,30] [0,0] [10,0] [10,0] [10,0] [10,0] [10,0]

rel m 0 1 2 3 [11,0] [0,30] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0]

acq m 0 1 2 3 [11,0] [10,30] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0]

a[0] = 4 4 1 2 3 [11,0] [10,30] [10,0] [10,30] [10,0] [10,0] [10,0] [10,0]

a[1] = 5 4 5 2 3 [11,0] [10,30] [10,0] [10,30] [10,30] [10,0] [10,0] [10,0]

a[2] = 6 4 5 6 3 [11,0] [10,30] [10,0] [10,30] [10,30] [10,30] [10,0] [10,0]

a[3] = 7 4 5 6 7 [11,0] [10,30] [10,0] [10,30] [10,30] [10,30] [10,30] [10,30]

rel m 4 5 6 7 [11,0] [10,31] [10,30] [10,30] [10,30] [10,30] [10,30] [10,30]

acq m 4 5 6 7 [11,30] [10,31] [10,30] [10,30] [10,30] [10,30] [10,30] [10,30]

... 4 5 6 7 [11,30] [10,31] [10,30] [10,30] [10,30] [10,30] [10,30] [10,30]

Figure 2.12: Example of a common idiom: Acquire a lock, touch the entire array, re-
lease the lock. The analysis veri�es that the program is race free using ��ne-grained�
shadow representation, wa, which keeps a vector clock for each element of the ar-
ray. On the far right, we show the �coarse-grained� shadow representation. In this
case, because each thread touches the entire array without doing synchronization, the
analysis could have used the coarse representation and retained full precision.
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carry the same meaning as before. For each element of the array, the analysis keeps

a vector clock. The �gure shows these clocks in the array wa, which we refer to as

the shadow array.

This program is race free, and the detector reports no races. However, the detector

can only verify the fact that the program is race free by performing a (relatively

expensive) race check on each array access. Since no synchronization operations

occur during the access sequence of a particular thread, these operations repeatedly

check equivalent shadow states. Thus the analysis su�ers from redundant race check

operations.

Furthermore, at some important points during the program, the shadow array

shows some serious redundancy as well. In particular, after the �rst thread has

�nished accessing the array but before the second thread has begun, the shadow

array consists of four equal vector clocks. Similarly, after the second array �nishes its

accesses, the shadow array is again four equal vector clocks. Thus the analysis su�ers

from redundancy in the shadow array representation.

There is a standard technique for mitigating this space redundancy, which we refer

to as the coarse-grained representation, or coarse mode. Instead of keeping a vector

clock in the shadow state for each element, the array as a whole is treated as one

abstract location and given a single vector clock. Thus, �ne and coarse mode di�er

in the way they associate vector clocks in the shadow state to target array elements.

In particular, �ne mode maps each element of the target program array to a distinct

vector clock in the shadow state, while coarse mode maps all elements of the target

array to a single vector clock in the shadow state.

In coarse mode, each access to the array is checked using this one vector clock

and the scalar rules above. In the example program of Figure 2.12, a coarse mode

detector will correctly report no races, while using only a single vector clock, success-

fully eliminating the space redundancy. The redundant clock operations can now be

eliminated as well, since all the checks are to a single clock. To do this, we simply note

that the thread performs no synchronization operations while accessing the various

array elements, and thus the thread's vector clock will be constant across all four

clock operations. Since all four clock operations are to the same clock, it follows that

the operations may be safely eliminated. This �nishes the elimination of both types

of redundancy from this simple program.
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Thread 1 Thread 2 a c1 c2 b w′a wblock
a

...
... 0 0 0 0 [10,0] [0,30] [0,0] [10,0] [10,0] [10,0]

bar b bar b 0 0 0 0 [11,30] [10,31] [10,30] [10,0] [10,0] [10,0]

a[0] = 4 a[2] = 6 4 0 6 0 [11,30] [10,31] [10,30] !!! [11,30] [10,31]

a[1] = 5 a[3] = 7 4 5 6 7 [11,30] [10,31] [10,30] � [11,30] [10,31]

bar b bar b 4 5 6 7 [12,31] [11,32] [11,31] � [11,30] [10,31]

...
... 4 5 6 7 [12,31] [11,32] [11,31] � [11,30] [10,31]

Figure 2.13: Example of another idiom: Worker threads divide an array into disjoint
parts and perform work without synchronization. w′a represents the shadow state
for a detector that keeps only one vector clock for the whole array. This algorithm
reports a race where there is none. wblock

a represents the ideal shadow state for this
program: one vector clock per thread. This algorithm correctly veri�es race freedom
while saving space over the naïve �ne mode.

However, there is a problem with this technique. In general, it is not precise

to check accesses to an array using only a single vector clock for the entire array.

This is because di�erent elements of the array may be accessed by di�erent threads

without synchronization, and this is not a race. By using only a single vector clock,

the detector will incorrectly report a race in such a case.

To understand this situation, consider a program with a more complicated access

sequence. In Figure 2.13, the array is initialized by the �rst thread (not shown). A

memory barrier then occurs. Brie�y, the semantics of the barrier is to compute and

distribute the component-wise maximum of all clocks, and then increment the local

clock.

Next, the threads divide the array into two blocks of two indices each and do some

work. Another barrier follows. Finally, the �rst thread reads every value of the array

(not shown). Note that the program is race free since the threads access disjoint

sets of indices. We have depicted the accesses in the threads as running in parallel

instead of considering an interleaving, because we wish to discuss several possible

interleavings.
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void crypt(byte[] key, byte[] plain, byte[] cipher) {

for (int i = 0; i < 4; i++) {

// fork thread with id = i to execute run()

}

}

void run(int id, byte[] key, byte[] plain, byte[] cipher) {

int block = plain.length / 4;

for (int i = id * block; i < (id + 1)*block; i++) {

cipher[i] = mix(key, plain[i]);

}

}

Figure 2.14: High-level code for the crypt benchmark.

The coarse mode optimization described above incorrectly reports a race on this

program. First consider an interleaving where the thread 1 accesses index 0 before

thread 2 accesses index 2. In this case, w′a will be checked against [11,30], and the

check will succeed, placing [11,30] in w′a. At some later time in this interleaving,

thread 2 will access index 2, and w′a will have entries at least 11 and 30 respectively.

But c2 will be [10,31], which is not comparable. Thus a race will be reported. The

case where thread 2 goes �rst is symmetric.

However, there is another, more sophisticated optimization to wa that is precise in

this situation. It is depicted as wblock
a in the right-most column of Figure 2.13. Here,

the analysis treats the �rst two indices as a single abstract location and the last two

indices as another abstract location. It thus keeps two vector clocks. Because the

threads each only touch a single abstract location, and because they access all the

constituent indices before performing synchronization, the analysis is able to correctly

conclude that the program is race free.

The optimization of the previous paragraph is the motivation for our work. For

example, consider the benchmark crypt that uses the above idiom of dividing an array

into blocks and then working independently. Previous work induced a higher-than-

average slow-down on this benchmark, and we sought to improve this performance.

At a high level, crypt implements an algorithm such as the one in Figure 2.14. The

procedure mix is not shown, but encapsulates the actual computation performed at

index i.
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Thread 1 Thread 2 a c1 c2 b wstride
a

...
... 0 0 0 0 [10,0] [0,30] [0,0] [10,0] [10,0]

bar b bar b 0 0 0 0 [11,30] [10,31] [10,30] [10,0] [10,0]

a[0] = 4 a[1] = 6 4 6 0 0 [11,30] [10,31] [10,30] [11,30] [10,31]

a[2] = 5 a[3] = 7 4 6 5 7 [11,30] [10,31] [10,30] [11,30] [10,31]

bar b bar b 4 6 5 7 [12,31] [11,32] [11,31] [11,30] [10,31]

...
... 4 6 5 7 [12,31] [11,32] [11,31] [11,30] [10,31]

Figure 2.15: Example of a more complicated access pattern: strided access.

We have seen that in general the coarse mode optimization is not precise. However,

the optimization is sound in the sense that if no races are reported then the program

is race free. Thus, previous work has suggested �rst attempting to check the program

using coarse mode and then falling back to �ne mode if any races are reported. Indeed,

MultiRace uses a technique that successively approximates �ne mode. It begins with

coarse mode and, if that fails (i.e., reports races), divides the array into two blocks

with one vector clock for each block and checks the program again. This continues

until no races are reported or until the array is represented in �ne mode, so that all

reported races are actual races [16].

This approach has the advantage that it can retain the speedups and memory

reductions associated with coarse mode while also providing a completeness guarantee

(that is, all reported races are real races). However, to achieve this completeness

guarantee, one must wait for the program to be checked many times until the race

is con�rmed in �ne mode. Thus it is possible to squander any time saved in coarse

mode by repeatedly checking a program with a real race. Furthermore, this technique

cannot help an �always on� detector that monitors running systems, since the analysis

requires multiple runs of the program on the same input. Ideally, an analysis would

begin in coarse mode until it was detected to be imprecise, at which point the analysis

would transition to a more expensive but more precise mode and continue. Our

analysis, described in Chapters 3 and 4, will do this.
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Furthermore, the technique of repeated runs with �ner representation is only ben-

e�cial on programs whose access patterns are blocks. However, many array programs

use more complicated patterns. Consider, for example, the program of Figure 2.15,

which is very similar to the previous program. The only di�erence is in how the two

worker threads split up the array. Now the �rst thread accesses even indices while

the second thread accesses the odd indices. We do not show the attempted coarse

mode analysis; instead, we have shown only the ideal, two clock state. The abstract

locations have changed to re�ect the new access pattern, so the �rst clock represents

even indices, and the second clock odd indices. This access pattern is not handled by

the multiple passes of MultiRace, and, to our knowledge, no existing dynamic race

detector is able to perform this optimization. Since non-blocked patterns are actually

fairly common in practice, it is desirable to come up with more general techniques.

Hence, we have two challenges:

• Design an analysis that begins in an e�cient but potentially imprecise mode

and detects when that mode may lead to imprecision on the �y, backing o� to

a less e�cient but precise representation. The analysis should be sound and

complete.

• Describe array access patterns other than blocks and make race detection ef-

�cient on programs with those patterns. More generally, develop the general

theory of access patterns and their e�cient representation.

We tackle these challenges in the remainder of the thesis.



Chapter 3

Summary of Analysis

This chapter introduces our analysis, answering the challenges set forth at the end of

Chapter 2. This chapter is intended both as preparation for the formalism presented

in Chapter 4, as well as a su�ciently detailed and self-contained account so as to

allow the reader to skim the more technical chapter that follows.

3.1 Overview

The chapter is organized as follows.

In Section 3.2 we describe how to take advantage of patterned array accesses by

eliminating redundant shadow states and race checks. We discuss several common

patterns that we have identi�ed in benchmarks and develop compression techniques

that are suited to each such pattern. Additionally, we develop a general description

of all possible compression techniques based on partitioning the array.

In Section 3.3 we discuss how to dynamically infer an access pattern for an execu-

tion trace in which we can only process a single index at a time, as they are accessed

by the target program. One challenge introduced by this limitation is that accesses

cannot be checked for races immediately if we hope to use compression. We deal with

the challenge of e�ciently and precisely summarizing accessed indices that have not

yet been checked for races. We also discuss the problem of changing access patterns,

as well as access patterns that are not captured by our modes. Finally, we discuss

how to perform race checks on summarized sets of indices, and how to adapt the

representation on the �y.

33
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Lastly, Section 3.4 brie�y presents our performance expectations for the analysis.

We summarize the redundancy eliminated by our approach and discuss the additional

bene�t due to relative lack of shared data structures. Finally, we discuss the funda-

mental constraint on any improvement to an optimized vector clock race detector: on

average, the cost of processing an access must not exceed the cost of performing the

standard race check.

3.2 Adaptive Array Representation

We have shown that the vector clock-based array race detector of Chapter 2 su�ers

from redundancy in several common cases. The coarse mode optimization proposed

and brie�y evaluated there can yield huge savings in both time and space, but it

lacks the precision that we seek in our analysis. Furthermore, there are other, more

subtle access patterns that produce redundancy in the race detector but that are not

well-matched by coarse mode.

We begin this section with a review of the redundancy present in all these forms.

Next, we pursue a careful analysis of the cases in which it is, in fact, precise to perform

the coarse optimization. From this special case, we �nally infer a general principle

that constrains when a compression mode may be applied precisely.

When a shadow array is redundant. We are interested in two types of redun-

dancy, viz shadow state redundancy and runtime check redundancy. These ine�cien-

cies impact the space and time requirements of checking a program for races. More

precisely, we are interested in common cases where the shadow array contains many

equivalent vector clocks, and where the �ne mode detector performs the same vector

clock operations on the same clocks over and over. Chapter 2 discussed several cases

of particular interest.

First, it is common for threads to access every element of an array without per-

forming any synchronization operations between the accesses. In this case, every

vector clock in the shadow array will be equivalent, and it follows that the coarse

mode technique from the previous chapter will be precise.

Second, threads may partition the array into contiguous blocks such that di�erent

threads touch entire blocks without synchronization. We call this block mode. In this

case, all the vector clocks of a particular block are equivalent. And, again, precision
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0 1 2 3

Fine

0 0 0 0

Coarse

0 0 1 1

Block

0 1 0 1

Stride

Figure 3.1: Four compression modes corresponding to common access patterns in
array programs. Colors represent abstract locations. Whenever a thread accesses an
element of a given color, it must access all other elements of that color before per-
forming a synchronization operation. Fine handles arbitrary access patterns. Coarse
handles programs that touch every element of the array without intervening synchro-
nization. Block and Stride are two ways of partitioning the array.

is retained if we treat each block as one abstract location, with a single vector clock

in the shadow state.

Finally, threads may access all indices separated by some �xed distance d from an

initial index, which we call stride mode. Thus, the array is partitioned into equivalence

classes modulo d, and the same redundancy discussion applies as above.

Figure 3.2 depicts each of the four modes we have considered so far: Fine,

Coarse, Block, and Stride.

When coarse mode is precise. Recall that the program of Figure 2.13 shows that

coarse mode is not precise. A race detector running in coarse mode reports a race

where there is none because it uses only a single vector clock to represent the entire

array. Thus accesses to distinct elements of the array are unnecessarily required to be

ordered by happens-before. We now ask the question: when could these unnecessary

checks be harmless?

We �rst recall that coarse mode retained precision in the example of Figure 2.12.

This in not hard to explain, since that program accesses the array all at once, in the

sense that whenever a thread touches a single element of the array, it touches the

rest of the array before performing a synchronization operation. This condition is

su�cient for coarse mode to retain precision, since any two access sequences of this

form race if and only if any single access from the �rst sequence is unordered with

respect to any single access from the second.

Thus, we may explain the failure of coarse mode on the program of Figure 2.13 as
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Fine Coarse

Block Stride

Figure 3.2: The function γ for each of the four modes.

a result of the more complicated access pattern. In particular, threads of this program

touch only some elements of the array between the barriers, and these access sequences

do not satisfy the condition above, and thus coarse mode need not be (in fact, is not)

precise on this access sequence.

We may state the condition slightly more formally as follows.

Coarse Mode Principle, First Version. If, between synchronization operations,

thread t accesses each element of a, then coarse mode may be used to precisely check

a for races.

Finally, we consider a rephrasing of the principle that will generalize more easily.

Coarse Mode Principle, Second Version. If, at every synchronization point, all

the vector clocks in the �ne representation of a are equal, then coarse mode may be

used to precisely check a for races.

Other Modes. We now consider a generalization of this principle to other compres-

sion modes. For the purposes of this discussion, a compression mode is a partition of

the valid indices of an array. The interpretation of such a mode is that it keeps one

vector clock per equivalence class and performs all race checks for elements of the class

relative to that class's vector clock. Numbering the equivalence classes 0, . . . ,m− 1,

we then specify the partition by a function γ : Nat → Nat such that γ(i) = c if index

i is in class c. We refer to regular indices into an array as concrete indices, and, for

reasons that will become clear, to equivalence class numbers as abstract indices.
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We now examine the partitions and γ functions for each of our four modes: Fine,

Coarse, Block, and Stride. See Figure 3.2.

Fine. Fine mode gives each index its own class. Thus γ(i) = i.

Coarse. Coarse mode lumps all indices into a single class, so γ(i) = 0.

Block. Block mode is parametrized by a length d, which is the number of

consecutive indices that are grouped into a single class by the mode. If N is

the length of the array, then there are N/d equivalence classes.1 Numbering the

equivalence classes in the natural way, γ sends indices {0, . . . , d− 1} to class

0, indices {d, 2d− 1} to class 1, and so on. Thus γ has a particularly nice

representation, namely, γ(i) = i div d, where div represents �oored integer

division.

Stride. Stride mode is also parametrized by a number d, which is the length

of the skips between successive indices accessed in this pattern. The equivalence

classes consist of all indices congruent to a �xed index modulo d. Thus γ again

has a nice representation γ(i) = i mod d.

With these examples understood, we return to the problem of generalizing the

above principle of precision.

Compression Principle, General Version. Suppose Sa is the �ne mode shadow

array for an array a, and that S ′a is a proposed compression of Sa, where the compres-

sion is speci�ed by the function γ. Then whenever Sa(i) = S ′a(γ(i)) for all concrete

indices i, S ′a precisely captures all information on Sa.

Intuitively, this says that if, for each equivalence class, every element of the given

class has the same shadow state, then the shadow array may be compressed by storing

that unique shadow state only once for each class. Thus, we may use S ′a in place of

Sa with no loss in precision.

3.3 Dynamic Mode Inference and Race Checks

The �nal version of our precise compression principle tells us that whenever the

compressed state agrees with the uncompressed state, we can use the compressed state

1For simplicity, we assume d divides N . The extension to the general case is handled in Chapter 4.
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without loss of precision. However, after each access the �ne mode shadow state is

updated, and so any agreement that held between the compressed and uncompressed

states is broken. For example, consider again the program from Figure 2.12. Just

before thread 1 begins to access the array, the coarse mode compression precisely

captures all the information in the �ne mode array, because all the �ne mode vector

clocks are equal. However, after the �rst access, this is no longer true. Thus it

is a nontrivial problem to actually use compressed shadow arrays to perform race

detection, and it is this problem that we consider in this section.

We begin by discussing a precise method of postponing race detection that al-

leviates the concerns of the previous paragraph. Next, we describe a method for

e�ciently summarizing some sets of indices in such a way that corresponds nicely to

the modes we considered in the previous section. Finally, we discuss how to actually

perform the required race checks, taking into account that the access pattern may

change on the �y.

Postponing race checks. We noted above that the invariant required for com-

pression is immediately broken if we perform a race check on a particular index. This

is due to the fact that any such race check updates the correct, �ne mode shadow

array in only one element, and thus breaks any invariant that depends on multiple

elements. To �x this problem, we need a way of waiting until a thread has (hopefully)

accessed many indices so that we can commit an entire equivalence class at a time.

Of course, we want to wait as long as possible so as to maximize the advantages of

the compression, but we cannot sacri�ce precision.

Precision is not lost if we never allow an index to go unchecked across a synchro-

nization operation. Again, this is due to the fact that a thread's vector clock does

not change in the absence of synchronization operations. Thus, if an access from the

current thread races with another access, as detected by a failed vector clock ordering

operation, the accesses will still race if we wait until just before the next synchroniza-

tion operation of the current thread to perform the check. The index's vector clock

will only increase in each component, so if the current thread's clock does not happen

after the last access to the index, it will also not happen after any subsequent access.

Summarizing accessed indices. Once we have decided to wait to check an index

for races, we need a way of storing it so that it can be checked later. Placing the
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index in a set data structure is one possibility, but the rather extreme time and

space e�ciency requirements under which we are working make even this option too

expensive. Instead, we need an e�cient way of summarizing the indices accessed since

the last synchronization operation.

The method of summary should use constant space and support a constant time

method for adding an index to the summary. Such a design is clearly impossible if

one wishes to represent all possible index sets. Thus, we allow ourselves to leave some

index sets unrepresentable.

Another design goal for index summary is that it should capture index sets that

are likely to be seen in programs that also experience the type of redundancy we are

trying to eliminate. In other words, we should try to represent as many equivalence

classes of the above modes as possible.

Given these goals, a natural design is a Footprint 〈b :e :k〉, where b, e, and k

are natural numbers: b, for beginning, represents the smallest index contained in

the summary; e, for end, represents the largest index in the summary; �nally, k is

the distance between successive elements of the summary. Thus if k = 1, then the

summary consists of all indices between b and e, inclusive. If k = 2, then the summary

consists of b and then every other index, and so on.

For example, consider the program from Figure 2.12 again, which is reproduced in

Figure 3.3. The footprints for each thread are shown in the two rightmost columns.

At synchronization operations, the indices that have been summarized are checked

for races (the vector clocks used for this are not shown). See the next chapter for

more details and discussion.

With our summary in hand, our strategy is as follows: Record indices for a

thread until either a synchronization operation occurs, or the index set becomes

representable. Then perform race checks on all the summarized indices, and begin to

record indices again, starting with the empty set.

Committing footprints. When it is time to perform race checks on all the indices

summarized in a footprint, we say that we are committing the footprint. Footprints

were designed so that access patterns well-matched with the modes could be summa-

rized. When this is the case, the footprint typically covers one or more equivalence

classes of the mode, and the race checks can be performed on the vector clocks for

those classes. However, we must also be able to handle footprints from di�erent
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Thread 1 Thread 2 fp1 fp2

...
Empty Empty

a[0] = 0 〈0:0:0〉

a[1] = 1 〈0:1:1〉

a[2] = 2 〈0:2:1〉

a[3] = 3 〈0:3:1〉

rel m (commit)

acq m Empty

a[0] = 4 〈0:0:0〉

a[1] = 5 〈0:1:1〉

a[2] = 6 〈0:2:1〉

a[3] = 7 〈0:3:1〉

rel m (commit)

acq m Empty

...

Figure 3.3: Postponing race checks using footprints to summarize indices accessed.

modes, or small footprints representing only a few indices, and not an entire equiv-

alence class of any compressing mode. In this case, we will adapt the shadow array

representation to a mode that does match the footprint being committed.

Note that every footprint covers a set of equivalence classes for �ne mode (that is,

no compression) since the equivalence classes consist of single indices. More generally,

we will say that a footprint is compatible with a mode if the set of indices in the

footprint is the union of some equivalence classes of the mode. Thus the above note

can be rephrased as all footprints are compatible with �ne mode.
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Previous Previous Footprint Final Final
Mode Sa to Commit Mode Sa

Coarse 〈0:3:1〉 (Block 4)

(Block 4) 〈0:1:1〉 (Block 2)

Coarse 〈0:6:2〉 (Stride 2)

(Stride 2) 〈0:4:4〉 (Stride 4)

Figure 3.4: Example transitions on an array of length 8.

We handle the problem of committing in two steps. First, we ensure that the foot-

print is compatible with the current mode by changing the current mode if necessary,

as described below. Second, we discover which equivalence classes are covered by

the footprint and perform the race checks on (and update) the corresponding vector

clocks. After the �rst step is complete, compatibility of the footprint with the mode

is assured, so that the footprint is guaranteed to cover some set of equivalence classes.

Thus, all that remains is to describe how to ensure compatibility.

Ensuring compatibility of modes and footprints. Given a mode and a foot-

print that is incompatible with it, we want to �nd a mode that is compatible with

the footprint such that it is e�cient to transition from the current mode to the new

mode. Furthermore, we should choose the new mode that compresses as much as

possible. These constraints essentially determine a choice for each possible case of

footprint and mode. See Figure 3.4 for some examples.

We now describe which transitions are considered e�cient.

• We will say that it is e�cient to transition to Fine from any mode, since we

can make copies of the right shadow state for each element.

• It is also e�cient to transition from block mode of length d to block mode of

length d′ if d′ divides d. In this case, the blocks of the �ner mode �t nicely

inside the blocks of the coarser mode, and so we can construct the �ner mode

by copying, again.

• Finally, it is e�cient to transition from stride mode of skip d to stride mode

of skip d′ if d divides d′ (reverse of the previous condition). This is because a
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larger skip d′ corresponds to less compression, and because the divisibility of d′

by d means that several small skips add up to a big skip.

All of these remarks may be summarized by saying that a mode transition is e�cient

if the destination mode is a re�nement of the source mode, when both are viewed as

partitions of the set of valid indices.

If any of the block-to-block or stride-to-stride transitions apply, we prioritize them

over falling back to �ne mode. In general, it is not possible to detect the most

compressed mode without traversing the entire shadow array. Thus we settle for

some heuristics that depend on the footprint being committed. These are described

in more detail in the following chapter, but for now it su�ces to say that in the

block-to-block case, we choose the block of length e− b, if that quantity divides the

current block length.

3.4 Expected Improvements

Our analysis eliminates redundancy that is encountered in practice. In particular,

when threads partition an array and touch entire parts without performing synchro-

nization, we seek to eliminate the repetitive vector clock operations and redundant

states that result. We have identi�ed two especially common access patterns, block

and stride. For each mode, we have discussed how to compress the shadow array, how

to postpone race checks by index set summary in footprints, and how to commit foot-

prints while making a mode transition if necessary. Overall, this leads to savings in

memory overheads due to fewer shadow states being needed, and savings in runtime

overhead due to fewer race checks being performed.

There is an additional bene�t that we have not discussed. Namely, that vector

clocks are necessarily shared state and thus must be synchronized to ensure that the

detector itself does not su�er from data races. This synchronization makes vector

clock operations even more expensive than one might expect. On the other hand,

footprints are entirely thread-local structures, and may be updated without synchro-

nization. Synchronization is thus only necessary when committing footprints. This

is a win if commits are relatively infrequent, as they will be in programs with access

patterns well-matched by our modes.
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More generally, in thinking about the performance of our analysis, it is important

to keep in mind the following fundamental constraint if we hope to beat current

dynamic race detectors.

The cost of an array access under our analysis must be faster on average

than a standard race check.

This constraint is especially important when we compare ourselves to a state-of-

the-art detector such as FastTrack, since FastTrack eliminates many expensive

vector clock operations, replacing them with fast integer operations in the common

case. Thus our analysis can only a�ord to average a few instructions per access.

As we shall see in Chapter 5, we are able to do this e�ciently much of the time,

especially when almost all of the array accesses in the target program are involved in

large patterns. However, we will also cases (such as random access patterns) where

footprints are less time-e�cient than �ne mode.





Chapter 4

Analysis

We now formalize and present the details of our analysis. We begin by formalizing

a small language of operations and traces similar to those informally introduced in

Chapter 2. Next, we formalize an unoptimized race detection algorithm as a semantics

on traces. We then introduce footprints and compression modes, and compatibility

of footprints with modes. We present our optimized race detector as a second se-

mantics on traces. Finally, we formalize the relationship between the unoptimized

and optimized detectors and prove that the two semantics are equivalent by proving

a bisimulation theorem. We conclude by describing how to interpret this as the fact

that our optimizations preserve soundness and completeness of the any underlying

race detection algorithm.

4.1 Language

We de�ne a simple language of operations performed by a multithreaded program.

See Figure 4.1. Tid is the type of thread identi�ers which uniquely name threads in

the program. We will use the metavariable t to refer to thread identi�ers. Lock is

the type of lock names. Note that these names are run-time names, and so one may

think of the lock name as its address in memory. This avoids issues of aliasing when

reasoning about locks statically. We will use the metavariables l and m to refer to

locks. The metavariables i and j refer to array indices.

We refer to single operations with the metavariable a. An operation is either an

array access, a lock acquire, or a lock release. An operation acc(t, i) denotes an access

45
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s, t ∈ Tid

l,m ∈ Lock

i, j ∈ Nat

a ∈ Op ::= acc(t, i) | acq(t, l) | rel(t, l)
α ∈ Trace = Op∗

Figure 4.1: Simple operation language and traces. The analysis works on traces,
which are interleavings of operations performed by the program.

to index i by thread t; acq(t, l) denotes a lock acquire on l by thread t; �nally, rel(t, l)

denotes a lock release on l by thread t.

We make several simplifying assumptions. First we assume there is a single array

in the program, so that every index refers to the same array. We denote the length of

this array by N . Second, we do not consider any memory accesses to non-array ob-

jects. Third, we do not distinguish reads and writes, simply labeling both as accesses.

Finally, we do not consider synchronization operations other than lock acquire and

release. All of these assumptions make the formalism cleaner, but of course our im-

plementation deals with them appropriately. We will discuss the required extensions

to the analysis when we present our implementation in Chapter 5.

A trace is simply a list of operations, which denotes an observed interleaving of

operations performed by the threads. We assume traces are valid with respect to

the synchronization primitives. Since the only synchronization operations we are

considering are lock acquires and releases, validity just means that a thread cannot

acquire a lock that a di�erent thread already holds and it cannot release a lock that

it does not hold.1 Furthermore, we assume that a thread never re-acquires a lock

that it already holds.2 We also assume sequential consistency. That is, we assume

that executions of multithreaded programs can be accurately represented by a trace.

This assumption is standard within the race detection community when formalizing

analyses.

1What it means for a trace to be valid becomes more complicated when more synchronization

primitives are considered, but even when we extend the formalism in Chapter 5 to handle all the

Java synchronization primitives, we will not need to worry about trace validity, since traces produced

by real Java programs are automatically valid.
2The extension to re-entrant locks is straightforward.
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4.2 Unoptimized Detector Semantics

We now precisely describe the behavior of an unoptimized race detector. In Figure 4.2

we present a semantics describing the detector as well as the state required by the

algorithm.

The basic detector we present here is essentially the algorithm discussed at the

end of Chapter 2. We have chosen this algorithm because its simplicity makes the

discussion clearer. The ideas and theorems carry over to any vector clock-based

dynamic race detector.3 We review from our previous discussion some of the details

of how this algorithm works.

As described it Chapter 2, a vector clock is a �nite partial map from threads to

clock values. Whenever we quantify over the arguments to a vector clock, we implicitly

restrict ourselves to those values for which the map is de�ned. Since the map is �nite,

in all such cases there are at most a �nite number of such thread identi�ers. The

ordering on vector clocks is the pointwise extension of the ordering on the natural

numbers.

The basic algorithm keeps a vector clock Ct for each thread t, which represents

the maximum clock value that thread t has observed for each thread. Note that Ct(t)

is thread t's current clock, which gets incremented every time thread t participates

in a release-like synchronization operation. The basic algorithm also keeps a vector

clock Ll for each lock l, which represents the maximum clock value over all threads

that have ever released the lock. Finally, the basic algorithm keeps a vector clock

Wi for each index in the array, whose t component is the value of thread t's clock at

the last time t accessed index i. Recall that we are assuming a single shared array

in the program, and no non-array accesses. These assumptions are re�ected in the

semantics, and this is essentially the only way in which our basic detector di�ers from

that of Chapter 2.

Race detection in the basic algorithm is accomplished by keeping all the vector

clocks updated in such a way that if two threads touch the same element of the array

without intervening synchronization, the vector clock ordering requirement in the

hypothesis of [Basic Acc] will not hold. We now describe the function of each rule.

[Basic Acc]. We have already mentioned that the comparison test in the hy-

3In fact, using vector clocks is not a requirement. Our ideas apply easily to heavily optimized

happens-before�based detectors, such as FastTrack. The extension to more exotic dynamic race

detectors would require some care, but we expect that most algorithms could be accommodated.
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VC = Tid ⇀ Nat

V v W ⇔ ∀t. V (t) ≤ W (t)

(V tW )(t) = max(V (t),W (t))

inct : VC → VC
inct(V ) = V [t := V (t) + 1]

σ ∈ BasicState = (C,L,W)

C : Tid → VC
L : Lock → VC
W : Nat → VC

σ →a σ′

[Basic Acc]

Wi v Ct

W′ = W[i := Wi[t := Ct(t)]]

(C,L,W)→acc(t,i) (C,L,W′)

[Basic Acq]

C′ = C[t := Ct t Ll]
(C,L,W)→acq(t,l) (C′,L,W)

[Basic Rel]

L′ = L[l := Ct]
C′ = C[t := inct(Ct)]

(C,L,W)→rel(t,l) (C′,L′,W)

σ →α σ′

[Basic Empty]

σ →ε σ
[Basic Step]

σ →α σ′ σ′ →a σ′′

σ →αa σ′′

Figure 4.2: One-step and trace semantics for an unoptimized race detector.
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pothesis is what actually reports races. The other hypothesis updates the state

at index i to re�ect the fact that thread t touched it by setting the t component

of the clock to the local clock of t, that is, Ct(t). If any other thread attempts

to access index i without synchronizing with t, a race will thus be reported.

[Basic Acq]. The hypothesis updates t's vector clock with the latest clock val-

ues that have been communicated through the lock.

[Basic Rel]. The �rst hypothesis updates the vector clock of l to re�ect the

latest values that have been learned by t and should be communicated to the

next thread to acquire the lock.

[Basic Empty] and [Basic Step]. We extend the above relation transitively

to traces (lists) of operations.

This semantics detects races in traces in the following sense. If σ0 →α σ then the

trace α has no races. Here, σ0 is the starting state of the detector, which is de�ned

as

σ0 = (λt.inct(0), λl.0, λt.0),

where 0 = λs.0 ∈ VC is the zero vector clock. Conversely, if there is no state σ such

that σ0 →α σ, then the trace α contains a race.

4.3 Optimized Detector Semantics

b, e ∈ Nat

k ∈ {1, 2, 3, . . .}
fp ∈ FootPrint ::= 〈b :e :k〉

J·K : FootPrint → 2Nat

J〈b :e :k〉K = {i | b ≤ i ≤ e and i ≡ b mod k}

Figure 4.3: Footprints and their interpretations.
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⊕ : FootPrint × Nat ⇀ FootPrint
Empty ⊕ i = 〈i :i :1〉
〈b :b :1〉 ⊕ (b+ k) = 〈b : (b+ k) :k〉
〈b :b :1〉 ⊕ (b− k) = 〈(b− k) :b :k〉
〈b :e :k〉 ⊕ i = 〈b :e :k〉 if b ≤ i ≤ e and i ≡ b mod k
〈b :e :k〉 ⊕ (e+ k) = 〈b : (e+ k) :k〉
〈b :e :k〉 ⊕ (b− k) = 〈(b− k) :e :k〉

Figure 4.4: Extending a footprint by an index.

Footprints. Figure 4.3 introduces footprints and the sets of array indices they

represent. The metavariables b, e, and k are taken to be natural numbers. Each also

has an informal meaning. Since a footprint is simply a triple of natural numbers, we

use b, e, and k always to refer to the components of the footprint. b represents the

beginning index, e the ending index and k the stride. The metavariable fp refers to

footprints.

The interpretation function J·K describes the set of indices represented by a foot-

print. In particular, a footprint 〈b :e :k〉 represents all the indices between the end-

points (inclusive) that appear at integer multiples of the stride from the beginning.

A footprint is empty if and only if e < b, so there are many choices of b, e, and k

such that J〈b :e :k〉K = ∅. We de�ne a canonical empty footprint, Empty = 〈1:0:1〉.
Similarly, if k > 1, it may be possible to represent the same set of indices with multiple

footprints. For simplicity, we always assume that all empty footprints are equal to

Empty, all singleton footprints are equal to 〈i :i :1〉, and that b ≡ e mod k for all

footprints.

Extending Footprints. We now disuss how to use footprints to keep track of the

indices accessed by a particular thread during a release-free span. Given a footprint

fp and an index i, the operation fp⊕ i attempts to construct a new footprint fp ′ that

is the extension of fp by i, that is, such that Jfp ′K = JfpK ∪ {i}. See Figure 4.4.
The result of fp ⊕ i is de�ned by considering several cases.

• If fp is empty, then the singleton footprint 〈i :i :1〉, which represents exactly

the index i, is the desired extension. This corresponds to the �rst line in the

de�nition.
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• If fp is itself a singleton, than there is no predetermined stride for the extension,

so we may set it however we wish. We create a 2-element footprint stride |b− i|.
This case is handled by lines 2 and 3 in the de�nition, depending on whether

i is less than or greater than b. Note that ⊕ always succeeds in extending an

empty or singleton footprint by any index.

• Finally, there is the typical case, where fp has at least two elements. Here, the

stride is predetermined, and so the extension succeeds only when the new index

is already in the footprint or exactly one stride o� of either end of the footprint.

This matches the common case of programs that access arrays left-to-right or

right-to-left. These cases are handled by the last three lines in the de�nition.

The function ⊕ is unde�ned if none of the above cases match. Furthermore, ⊕ is

conservative in the sense that it only constructs certain classes of extensions, namely

adding a new largest or smallest element. Thus there exist footprints and indices such

that ⊕ will not aggregate them, even though an extension exists.4

Consider the following examples of footprints being extended.

fp i fp ⊕ i
Empty 0 〈0:0:1〉
〈0:0:1〉 1 〈0:1:1〉
〈0:1:1〉 2 〈0:2:1〉
〈0:0:1〉 4 〈0:4:4〉
〈0:4:4〉 8 〈0:8:4〉

In each case we show the initial footprint and the index to be aggregated, followed

by the resulting footprint.

Modes. We now formalize several ways of compressing redundant array shadow

states so that it is e�cient to perform lookups using the original index. Recall that

we are assuming that there is only one array in the program, and its length is denoted

by N . A mode M is either (Block d) or (Stride d), where d ∈ {1, 2, 3, . . .}. In

mode (Block d), the uncompressed array is conceptually treated as a sequence of

4Consider fp = 〈0:4:4〉 and i = 2. Then J〈0:4:2〉K = JfpK ∪ {i}, but ⊕ never modi�es the stride

of a non-singleton footprint, and so it will not �nd this extension. In fact, this is essentially the only

case where an extension footprint exists but ⊕ won't �nd it. It would be trivial to add this case

to ⊕, but we have not found it necessary, and it is important to keep ⊕ as simple and e�ciently

implementable as possible, since it is used on every array access.
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d ∈ Nat

M ∈ Mode ::= (Block d) | (Stride d)

γ : Mode × Nat → Nat

γ((Block d), i) = i div d

γ((Stride d), i) = i mod d

Figure 4.5: Modes describe how to compress an array by specifying the size of the
compressed array, and a function mapping uncompressed indices to compressed in-
dices.

blocks of length d. Each element of a block-compressed array corresponds to an

entire block of elements from the uncompressed array. If the array length is not

divisible by d, then the last block is truncated. We are motivated to consider the

case where d need not divide N because it arises frequently in practice. In mode

(Stride d), the array is divided into d interleaved sequences, where within each

sequence the di�erence between successive indices is d. These modes capture common

access patterns observed in programs. For example, (Block d) can compress an

entire row of a 2-dimensional array stored in row-major order, while (Stride d) can

compress a column. See Figure 4.5.

We de�ne two abbreviations corresponding to modes introduced informally in

previous chapters. First, Fine = (Block 1), where each index is in its own block.

Next, Coarse = (Block N), so that the entire array is considered as a single block.

The function γ maps uncompressed indices to compressed indices. In other words,

to access the index i in the original array, we access the index γ(M, i) in the com-

pressed array when the compression is done under mode M .

Compatibility of footprints and modes. Informally, we say that a footprint is

compatible with a mode if it represents a set of indices that is the union of equivalence

classes under the mode thought of as a partition. The relation M � fp formalizes

this notion. The rule [FP Compat] exactly encodes the fact that indices in the same

equivalence class induced by M must either both be in the footprint or neither be in

the footprint.
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M � fp

[FP Compat]

∀i, j ∈ 1..N. (γ(M, i) = γ(M, j)) ⇒ (i ∈ JfpK⇔ j ∈ JfpK)
M � fp

M ` fp

[Block Algo Compat]

b ≡ 0 mod d
e ≡ −1 mod d or e = N − 1

(Block d) ` 〈b :e :1〉

[Stride Algo Compat]

b < d
e ≡ b mod d

N − d ≤ e < N

(Stride d) ` 〈b :e :d〉

ρ : Mode × FootPrint → 2Nat

ρ((Block d), 〈b :e :k〉) = {i div d | i ∈ [b, e]} if (Block d) ` 〈b :e :k〉
ρ((Stride d), 〈0:N − 1:1〉) = {0, 1, . . . , d− 1}

ρ((Stride d), 〈b :e :k〉) = {b} if (Stride d) ` 〈b :e :k〉

Figure 4.6: Compatibility of modes and footprints.
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σ ∈ BasicState = (C,L,W)

C : Tid → VC
L : Lock → VC
W : Nat → VC

τ ∈ OptimizedState = (C,L, F,M, V )

C : Tid → VC
L : Lock → VC
F : Tid → FootPrint
M : Mode
V : Nat → VC

σ →a σ′ τ  a τ ′

[Basic Acc]

Wi v Ct

W′ = W[i := Wi[t := Ct(t)]]

(C,L,W)→acc(t,i) (C,L,W′)

[Opt Acc]

F ′ = F [t := F (t)⊕ i]
(C,L, F,M, V ) acc(t,i) (C,L, F ′,M, V )

[Basic Acq]

C′ = C[t := Ct t Ll]
(C,L,W)→acq(t,l) (C′,L,W)

[Opt Acq]

C ′ = C[t := Ct t Ll]
(C,L, F,M, V ) acq(t,l) (C ′, L, F,M, V )

[Basic Rel]

L′ = L[l := Ct]
C′ = C[t := inct(Ct)]

(C,L,W)→rel(t,l) (C′,L′,W)

[Opt Rel]

F (t) = Empty
L′ = L[l := Ct]
C ′ = C[t := inct(Ct)]

(C,L, F,M, V ) rel(t,l) (C ′, L′, F,M, V )

Figure 4.7: One step semantics for basic and optimized race detectors.

The algorithmic compatibility relation M ` fp provides a de�nition of compati-

bility that is more e�cient to compute than the semantically de�ned M � fp. The

rules for algorithmic compatibility M ` fp are designed to agree with the semantic

compatibility relation M � fp in all cases.

Finally, the function ρ computes the set of abstract indices covered by a footprint

in a given mode. The function ρ satis�es ρ(M, fp) = γ(M, JfpK).

Optimized Semantics We now precisely describe the behavior of the optimized

analysis, as well as its relationship to the basic analysis. In Figure 4.7 we present the

semantics for operations under the optimized analysis. We repeat the semantics of

the basic detector for convenience.
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τ ≡ τ ′

[Equiv Commit]

M � F (t)
∀i ∈ ρ(M,F (t)). V (i) v Ct

F ′ = F [t := Empty]

V ′ = V [i := V (i)[t := Ct(t)]]
∀i∈ρ(M,F (t))

(C,L, F,M, V ) ≡ (C,L, F ′,M, V ′)

[Equiv Mode]

∀i ∈ 1..N. V ′(γ(M ′, i)) = V (γ(M, i))

(C,L, F,M, V ) ≡ (C,L, F,M ′, V ′)

[Equiv Trans]

τ ≡ τ ′ τ ′ ≡ τ ′′

τ ≡ τ ′′

Figure 4.8: Committing and change of mode.

The optimized detector is, in many respects, the same as the basic detector. We

highlight the di�erences. First, instead of the vector clock Wi for each index, we

have a map V : Nat → VC and a mode M . This implements the idea that V is a

compression of W, as described by M . Additionally, the optimized algorithm keeps

a footprint F (t), for each thread t, that represents the indices thread t has accessed

since its last release-like synchronization operation. These accesses have not yet been

checked for race conditions.

On an access, the analysis attempts to aggregate the index into the footprint for

the current thread. When the resulting index set is not representable, we have left ⊕
unde�ned, so that the rule [Opt Acc] does not apply. This means that the only way

for the analysis to proceed is to �rst perform a commit, which we describe below.

The rule for acquiring a lock is identical to the basic case. On a lock release, the �rst

hypothesis of the optimized rule requires that there be no indices still waiting to be

checked by the current thread. This hypothesis can only be satis�ed if there have

been no accesses, or if we have just performed a commit operation.

Comitting footprints. The process of committing is captured by the relation τ ≡
τ ′ on optimized states, which indicates when two optimized states are conceptually
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equivalent. In essence, the relation indicates when a footprint of accesses can be

committed. Consider the rule [Equiv Commit]. The �rst hypothesis ensures that

the footprint we are about to commit is compatibile with the current mode. The

second hypothesis performs all the race checks, using the function ρ to consider all

the abstract indices covered by the footprint. The third hypothesis clears the footprint

for the committing thread, and the last hypothesis updates the relevant vector clocks

in the shadow array.

Of course, the footprint for thread tmay not be compatible with the current mode.

That is, the relation M � F (t) does not always hold.

Rule [Equiv Mode] captures how to convert the array's representation to a dif-

ferent mode, so that the commit may be applied. The hypothesis of [Equiv Mode]

encodes the fact that both modes faithfully compress the same shadow array. Note

that we make no mention of whether it is possible to e�ciently make this transition,

which was discussed in Chapter 3. This lack of restriction makes it possible for an im-

plementation to choose the transitions it wants to make, and all of the theorems below

will still hold. Rule [Equiv Mode] ensures that ≡ is re�exive, and [Equiv Trans]

makes ≡ transitive.

The rules of Figure 4.9 extend the step relations above to traces (i.e., lists) of

operations. Any state steps to itself on the empty trace. In the basic transitive rule,

any trace may be extend by simply stepping by one operation on the right. The

optimized transitive rule is more complicated. Intuitively, it allows an intermediate

mode change or commit before processing the next operation. The optimized analysis

begins in state τ0.

Figure 4.10 relates basic and optimized states. In particular, an optimized state is

equivalent to a basic state if their vector clocks agree for all indices of the array, after

the optimized state has committed. Note that σ0 ∼ τ0.

4.4 Equivalence of the Two Semantics

We will now prove that the optimized semantics is equivalent to the original semantics

by proving a bisimulation theorem relating the two. Informally, the semantics detect

race conditions by �getting stuck.� That is, the trace contains a race if at some
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σ →α σ′ τ  α τ ′

[Basic Empty]

σ →ε σ

[Opt Empty]

τ  ε τ

[Basic Step]

σ →α σ′ σ′ →a σ′′

σ →αa σ′′

[Opt Step]

τ  α τ ′ τ ′′  a τ ′′′

τ ′ ≡ τ ′′

τ  αa τ ′′′

τ0 = (C0, L0, F0,M0, V0)

C0 = λt.inct(0)

L0 = λl.0

F0 = λt.Empty

M0 = Coarse

V0 = λt.0

0 = λt.0 ∈ VC

Figure 4.9: Semantics of traces.

σ ∼ τ
[State Eq]

C = C L = L
(C,L, F,M, V ) ≡ (C,L, (λt.Empty),M ′, V ′)

∀i.Wi = V ′γ(M ′,i)

(C,L,W) ∼ (C,L, F,M, V )

Figure 4.10: Equivalence of basic and optimized states.
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operation in the trace, there is no state to which the semantics may step. The

theorem below shows that the optimized semantics gets stuck if and only if the original

semantics gets stuck.

Theorem 4.1 (Bisimulation).

1. If σ ∼ τ and σ →α σ′, then there exists τ ′ such that τ  α τ ′ and σ′ ∼ τ ′.

2. If σ ∼ τ and τ  α τ ′ and τ ′ ≡ (C,L, (λt.Empty),M, V ), then there exists σ′

such that σ →α σ′ and σ′ ∼ τ ′.

We will prove this theorem by induction, and at each step we will need to know

that if one semantics can make progress, so can the other.

Theorem 4.2 (Single-Step Bisimulation).

1. If σ ∼ τ and σ →a σ′, then there exist τ ′ and τ ′′ such that τ ≡ τ ′′, τ ′′  a τ ′,

and σ′ ∼ τ ′.

2. If σ ∼ τ and τ  a τ ′ and τ ′ ≡ (C,L, (λt.Empty),M, V ), then there exists σ′

such that σ →a σ′ and σ′ ∼ τ ′.

This theorem corresponds to the following pair of diagrams, where we draw the

trace growing down. At each step we extend the current state by applying the single-

step theorem.

σ ∼ τ→  

σ′ ∼ ∃τ ′

σ ∼ τ→  

∃σ′ ∼ τ ′

We begin with a few lemmas. First, we show that the algorithmic compatibility

relation is really the same as the semantic compatibility relation.

Lemma 4.3. For all M and nonempty fp, M � fp if and only if M ` fp.

Proof. First suppose M � fp. By analyzing each case for M and fp, we'll show that

M ` fp.

• Suppose M = (Block d). If d = 1, then M ` fp follows immediately. Other-

wise, d > 1. Whenever i < b, i 6∈ JfpK, and so we must have γ(M, i) 6= γ(M, b).
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Thus b is the smallest index i such that i div d = b div d. It follows that

b ≡ 0 mod d.

If e 6= N − 1, then whenever e < i < N , i 6∈ JfpK, and so γ(M, i) 6= γ(M, e).

Thus e is the largest integer i such that e div d = i div d. It follows that

e ≡ −1 mod d.

• Now suppose M = (Stride d). If d = 1, the γ(M, i) = γ(M, j) for all i, j,

and so JfpK = 1..N , so that b = 0, e = N − 1, and k = 1, and so M ` fp

follows. Otherwise, d > 1. If b ≥ d, then there exists i such that 0 ≤ i < b

and i ≡ b mod d, that is γ(M, i) = γ(M, b). But i 6∈ JfpK since i < b. Thus we

must have b < d. Since e ∈ JfpK, it also follows that e ≡ b mod d. Finally, if

e < N − d, then there exists i such that N − d ≤ i < N and i ≡ b mod d. But

i 6∈ JfpK since i > e. Thus we must have N − d ≤ e.

Now suppose M ` fp. We'll use case analysis again to show that M � fp. Let

i, j ∈ 1..N such that γ(M, i) = γ(M, j) and i ∈ JfpK.

• Suppose M = (Block d). Then i div d = j div d and b ≤ i ≤ e. Note b ≤ j

since b div d ≤ j div d and b is the smallest integer i such that i div d = b div d.

If j ≤ i, we're done, so suppose i < j. If e = N − 1, then j ≤ e trivially.

Otherwise e ≡ −1 mod d. Since j div d = i div d ≤ e div d, it follows that

j ≤ e since e is the largest integer i such that i div d = e div d.

• Suppose M = (Stride d). Then i mod d ≡ j mod d and i mod d ≡ b mod d ≡
e mod d. Since b < d and there is only one non-negative integer i such that

i < d and i ≡ b mod d, it follows that b ≤ j. Similarly, N − d < e implies

j ≤ e.

Next, we need to know that the optimized analysis can represent any access pat-

tern. This is the purpose of Fine mode. We apply our knowledge of algorithmic

compatibility from the previous lemma.

Lemma 4.4. For all fp, Fine � fp.

Proof. By Lemma 4.3 it su�ces to show that Fine ` fp. By [Block Algo Compat],

this will follow if b ≡ 0 mod d and e ≡ −1 mod d. But d = 1 for Fine mode. The

result follows since n ≡ m mod 1 for all n,m ∈ Z.
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We now show that if an optimized state is equivalent to an optimized state with

empty footprints for each thread, then all pending race checks will succeed.

Lemma 4.5. If (C,L, F,M, V ) ≡ (C ′, L′, (λt.Empty),M ′, V ′), then for all t and

i ∈ JF (t)K, Vγ(M,i) v Ct.

Proof. Follows from the second hypothesis of [Equiv Commit] and the fact that if

M � fp and i ∈ JfpK, then γ(M, i) ∈ ρ(M, fp).

We are now ready to prove Theorem 4.2.

Theorem 4.2 (Single-Step Bisimulation).

1. If σ ∼ τ and σ →a σ′, then there exist τ ′ and τ ′′ such that τ ≡ τ ′′, τ ′′  a τ ′,

and σ′ ∼ τ ′.

2. If σ ∼ τ and τ  a τ ′ and τ ′ ≡ (C,L, (λt.Empty),M, V ), then there exists σ′

such that σ →a σ′ and σ′ ∼ τ ′.

Proof. Write σ = (C,L,W), τ = (C,L, F,M, V ). Since σ ∼ τ , we have C = C,

L = L, and τ ≡ τpre where τpre = (C,L, (λt.Empty),M ′, V ′) for some M ′ and V ′

such that Wi = V ′γ(M ′,i) for all i.

1. To prove the �rst part of the theorem, we assume σ ∼ τ and that σ →a σ′. By

analyzing each possible operation a and show the existence of τ ′′ and τ ′ such

that τ ≡ τ ′′, τ  a τ ′, and σ′ ∼ τ ′.

• First, suppose a = acc(t, i). Since σ →a σ′, it follows that σ′ = (C,L,W′)
where W′ = W[i := Wi[t := Ct(t)]]. We also have Wi @ Ct. De�ne

τ ′ = (C,L, F ′,M ′, V ′)

where F ′(t) = 〈i :i :1〉 and F ′(s) = Empty for all s 6= t. Also, de�ne

τ ′′ = τpre. Then τ ≡ τ ′′ immediately. Since Empty⊕ i = 〈i :i :1〉, it follows
that τ ′′  a τ ′.

We now show σ′ ∼ τ ′. Let τpost = (C,L, (λt.Empty),Fine,W′). Then

we have τ ′ ≡ τpost. To see this, �rst note τ ′ ≡ (C,L, F ′,Fine,W) by

[Equiv Mode]. Then (C,L, F ′,Fine,W) ≡ τpost by [Equiv Commit] since

by Lemma 4.4, Fine � fp for all fp and since Wi v Ct by hypothesis. By

transitivity of ≡, it follows that τ ′ ≡ τpost. Thus σ
′ ∼ τ ′.
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• Next, suppose a = acq(t, l). Since σ →a σ′, it follows that σ′ = (C′,L,W),

where C′ = C[t := Ct t Ll]. De�ne τ ′ = (C ′, L, F,M, V ) where C ′ = C′,
and it follows immediately that σ′ ∼ τ ′ and that τ  a τ ′. Let τ ′′ = τ .

Then by re�exivity of ≡, τ ≡ τ ′′, as desired.

• Finally, suppose a = rel(t, l). Since σ →a σ′, we have σ′ = (C′,L′,W),

where L′ = L[l := Ct] and C′ = C[t := inct(Ct)]. De�ne

τ ′ = (C ′, L′, F ′,M ′, V ′),

where C ′ = C′, L′ = L, and F ′ = (λt.Empty). Also de�ne τ ′′ = τpre. It

follows that τ ≡ τ ′′ and that σ′ ∼ τ ′. Then since F ′(t) = Empty, we have

τ ′′  a τ ′.

2. For the second part, we work in the other direction, still assuming σ ∼ τ . This

time, we suppose τ  a τ ′ and show the existence of σ′ such that σ →a σ′ and

σ′ ∼ τ ′. The proof is again a case analysis on a.

• If a = acc(t, i), then since τ  a τ ′, we have τ ′ = (C,L, F ′,M, V ) where

F ′ = F [t := F (t)⊕ i]. We are also given τ ′ ≡ (C,L, (λt.Empty),M ′′, V ′′)

for some M ′′ and V ′′. De�ne W′j = V ′′γ(M ′′,j) and σ′ = (C,L,W′). We

immediately have σ′ ∼ τ ′. By Lemma 4.5 applied to τ ′, we have that

Wi v Ct. Since the set of indices represented by the footprints is only

extended by i, it follows that W′ = W[i := Wi[t := Ct(t)]]. Thus σ →a σ′.

• If a = acq(t, l), then since τ  a τ ′, we have τ ′ = (C ′, L, F,M, V ). De�ne

σ′ = (C ′,L,W), and it follows that σ →a σ′ and σ′ ∼ τ ′.

• If a = rel(t, l), then since τ  a τ ′, we have τ ′ = (C ′, L′, F,M, V ). De�ne

σ′ = (C ′, L′,W), and it follows that σ →a σ′ and σ′ ∼ τ ′.

Since σ0 ∼ τ0, this theorem shows σ0 →α σ if and only if τ0  α τ for some τ such

that σ ∼ τ . Furthermore, since the basic analysis is known to be precise, this shows

that our analysis is also precise.





Chapter 5

Implementation and Evaluation

5.1 Implementation

We have developed a prototype implementation of the ideas from Chapters 3 and 4.

Our tool, called ShrinkWrap, is a modi�cation of the implementation of the Fast-

Track dynamic race detector, which is built in RoadRunner. We review some of

the details from the implementation of FastTrack and RoadRunner, following

the original descriptions [6, 7].

RoadRunner is a framework for developing dynamic analyses for multithreaded

software that is written entirely in Java and runs on any JVM. RoadRunner inserts

instrumentation code into the target bytecode program at class-load time. This in-

strumentation code generates a stream of events for lock acquires and releases, �eld

and array accesses, etc. Back-end tools, such as FastTrack, process this event

stream as it is generated. The events generated by a thread in the target program are

processed by that thread itself. Thus back-end tools are inherently multithreaded.

RoadRunner enables back-end tools to attach instrumentation state to each

thread, lock object, and data memory location used by the target program. Tool-

speci�c event handlers update the instrumentation state for each operation in the

observed trace and report errors when appropriate. The RoadRunner framework

provides several bene�ts. By working exclusively at the bytecode level, RoadRun-

ner tools can check any Java program regardless of whether source code is available.

In addition, RoadRunner's component architecture facilitates reliable comparisons

63
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n1 n2

Figure 5.1: Split mode.

between di�erent back-end checking tools, which allows us to evaluate our optimiza-

tion against the previous version of FastTrack.

FastTrack is an optimized vector clock-based race detector. We brie�y de-

scribed some of the techniques it uses in Chapter 2. Here, we are concerned only

with its treatment of arrays, an issue that is essentially orthogonal to the rest of

the algorithm. FastTrack uses the standard technique of treating each element of

an array separately. Our modi�cation of FastTrack implements the compression

and redundancy elimination techniques described in the previous chapters to reduce

overhead on array-intensive programs.

Our implementation extends the formalism presented above in several ways. First,

we support all of Java's primitive synchronization operations. This extension is es-

sentially handled by RoadRunner and FastTrack, except that we must ensure

that any outstanding indices are committed on each release-like synchronization op-

eration [7]. Second, we distinguish reads from writes, instead of treating all accesses

equally. This is necessary to avoid reporting races on simultaneous reads of the same

memory location. We also support multiple arrays, as well as accesses to non-array

variables, both of which are straightforward.

Footprints are maintained for each thread and array, and footprints are updated

on each access. Thus the number of footprint operations is equal to the number of

array accesses in the target program, which, in turn, is equal to the number of array

race checks handled by the standard implementation of FastTrack on the same

program.

When the analysis is in �ne mode, we do not maintain footprints for e�ciency

reasons. Instead, we pass each array access to FastTrack, hoping to eliminate as

much overhead as possible in the case where the target program's accesses are not

well-matched by our modes.
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We also added an additional mode, called Split, that supports a three-way par-

tition of an array into contiguous blocks, each of arbitrary size. See Figure 5.1. Our

motivation was a benchmark that accessed all but the �rst and last elements of a

large array and was subsequently forced into �ne mode since those accesses did not

match any Block or Stride patterns.

Our implementation also attempts to choose mode transitions that are e�cient and

compressed. We begin each array in coarse mode, transitioning as necessary to retain

precision. Since every array begins in coarse mode, the most common transitions are

out of coarse mode. We have not yet explored a general system of transitions among

all the modes. Instead, our implementation performs only the transitions that begin

in coarse, as well as the block-to-block and stride-to-stride transitions described in

Chapter 3.

5.2 Evaluation

We demonstrate the e�ectiveness of our analysis by evaluating its ability to eliminate

redundant checks and precisely compress shadow state. We compare our modi�ed

version of FastTrack with the original in both running time and race check opera-

tions, and show that in cases where the arrays are accessed in patterns we can match,

our analysis improves performance.

We performed experiments on the following benchmarks: elevator, a discrete

event simulator for elevators [19]; hedc, a tool to access astrophysics data from

Web sources [19]; tsp, a Traveling Salesman Problem solver [19]; mtrt, a multi-

threaded ray-tracing program from the SPEC JVM98 benchmark suite [18]; jbb, the

SPEC JBB2000 business object simulator [18]; crypt, lufact, sparse, series, sor,

moldyn, montecarlo, and raytracer from the Java Grande benchmark suite [10]; the

colt scienti�c computing library [2]; the raja ray tracer [8]; and and philo, a dining

philosophers simulation [3]. We con�gured the Java Grande benchmarks to use the

number of worker threads reported in Table 5.2 and the largest data set provided.

All programs use the same number of threads when executing with and without race

detection.

All experiments were performed on a Pogo Linux Atlas server, with dual quad-

core AMD Opteron processors and 64GB of memory, running Ubuntu 12.04 and Sun's

Java HotSpot 64-bit VM, version 1.6.0. The timing results include class loading time,
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Race Checks Shadow States
Program FastTrack ShrinkWrap FastTrack ShrinkWrap

(Count) (×FastTrack) (Count) (×FastTrack)
colt 57,136,376 0.01 424,294 0.2
crypt 1,000,000,351 0.0000004 150,000,123 0.0000006
lufact 7,531,601,524 0.66 4,008,018 1.0
moldyn 6,539,897,621 0.03 167,202 0.63
montecarlo 959,513,963 0.0006 180,026,984 0.003
mtrt 6,076,081 0.15 621,011 1.0
raja 231 1.0 150 1.0
raytracer 1,185,304,894 0.00000007 250,300 0.0003
sparsemm 3,640,498,828 0.42 15,996,750 0.71
series 4,000,064 0.06 2,000,025 0.13
sor 2,423,081,292 0.67 4,002,022 0.75
tsp 269,708,137 0.21 115,605 1.5
elevator 5,664 0.66 502 1.0
philo 165 0.8 10 1.0
hedc 82,396 0.01 44,476 0.01
jbb 397,771,502 0.71 38,300,276 0.26

Geo. Mean 0.02 0.09

Table 5.1: Benchmark shadow race check operations and state allocation.

instrumentation by RoadRunner, and execution of the target program.

Shadow state allocation and operations. Table 5.1 contains our data on the op-

erations performed by both the unoptimized and optimized versions of FastTrack.

We report the total number of accesses handled by FastTrack without compression

in the �rst column. The second column shows the proportion of accesses handled by

FastTrack when compression is enabled. That is, the second column shows how

many commit operations ShrinkWrap performs. The third column shows the to-

tal number of shadow states required by FastTrack to check the program. This

is essentially the number of distinct array elements touched by the target program.

The fourth column shows the proportion of shadow states required with compression

enabled.

ShrinkWrap is able to reduce the number of accesses checked by FastTrack

by at least 90% on 7 out of the 16 benchmarks (colt, crypt, moldyn, montecarlo,

raytracer, series, and hedc). At least three other programs (philo, raja, and



5.2. EVALUATION 67

Base Instrumented Time
Program Threads Time Fast Shrink

(num) (sec) Empty Track Wrap

colt 11 15.9 1.2 1.3 1.1
crypt 7 1.2 12.4 28.7 17.9
lufact 4 5.7 2.0 29.1 12.5
moldyn 4 7.9 7.3 17.1 23.8
montecarlo 4 5.6 3.5 5.7 4.5
mtrt 5 0.4 12.2 13.3 13.3
raja 2 0.4 9.9 11.2 11.2
raytracer 4 5.0 4.3 20.1 23.0
sparsemm 4 4.8 8.2 26.1 26.8
series 4 573.0 1.0 1.0 1.0
sor 4 2.4 2.0 4.9 5.2
tsp 5 0.5 7.5 11.9 13.5
elevator* 5 5.0 1.2 1.3 1.3
philo* 6 8.0 0.3 0.3 0.4
hedc* 6 4.9 1.5 1.5 1.7
jbb* 5 73.0 1.2 1.2 1.2

Geo. Mean 4.4 9.4 8.6

Table 5.2: Benchmark running times. Programs marked with `*' are not compute-
bound and are excluded from averages.

elevator) are not array-intensive, and so we do not expect any bene�t from our

technique. The remaining programs may be somewhat array-intensive but their access

patterns cannot be exploited by ShrinkWrap. For example, sparsemm is a sparse

matrix multiply routine that generates a random access sequence for its arrays at run

time. In general, ShrinkWrap is quite e�ective at reducing the total number of

accesses that need to be checked for races by the underlying detector.

Running Times. Table 5.2 contains the results of our timing experiments. For

each program we report the number of threads, and the uninstrumented running

time. We also list slowdowns (i.e., multiples of the base time) for three analyses: the

Empty tool performs no analysis and measures the overhead due to the RoadRun-

ner framework; the FastTrack standard implementation; and the ShrinkWrap

implementation of our technique. Geometric means of slow-downs are also reported.

Each timing benchmark was averaged across 5 runs.



68 CHAPTER 5. IMPLEMENTATION AND EVALUATION

The four programs that are marked with `*' are not compute bound and we do

not include them in our averages. These programs include timed delays and other

operations that can signi�cantly a�ect the timing results. For example, some of these

programs are actually sped up when instrumented by RoadRunner because the

instrumentation code changes the behavior of the thread scheduler.

FastTrack and ShrinkWrap di�er only in the way they handle array ac-

cesses. ShrinkWrap performs footprint bookeeping on each array access, while

FastTrack performs race checks. In those benchmarks where ShrinkWrap is

slower, the bookkeeping costs outweigh the savings of the eliminated race checks.

For compute-bound programs that do not use arrays intensively, such as series, the

performance of ShrinkWrap is indistinguishable from vanilla FastTrack, as one

would expect.

It is important to note that a race check for FastTrack does not necessarily

require a vector clock operation, and thus in some cases the unoptimized operations

are quite fast. This plays out in several of the benchmarks, where the number of race

check operations and states are reduced signi�cantly, but the running time does not

see nearly as large a reduction. This is partially due to the fact that FastTrack

has already made some of these operations e�cient and that building footprints dy-

namically does induce some overhead. There are also e�ects due to caching and JIT

optimization that are di�cult to quantify or account for. In particular, the complexity

of some of the analysis in ShrinkWrap may make the HotSpot compiler reluctant

to inline some methods that are inlined in FastTrack. This can result in signi�cant

slowdowns.

ShrinkWrap is more time-e�cient on 4 out of the 12 benchmarks compute-

bound benchmarks (colt, crypt, lufact, and montecarlo). On several others, there

is no signi�cant di�erence between FastTrack and ShrinkWrap (e.g., mtrt). Fi-

nally, there are a few programs for which ShrinkWrap performs signi�cantly worse

than FastTrack (moldyn). This case is especially surprising given that the results

of Table 5.1 showed that ShrinkWrap eliminated the vast majority of the accesses.

We believe ShrinkWrap can be implemented to give better running time perfor-

mance but have not explored how to optimize its code further to date. We discuss

several benchmark programs in more detail below.

• crypt is a cryptographic benchmark that performs an encryption followed by

a decryption using several worker threads that divide up an array into blocks.
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We mentioned this benchmark brie�y in Chapter 2 and presented a high-level

description of its algorithm there. FastTrack reports that it is already able

to eliminate essentially all vector clocks from the analysis of this program [6].

Thus, it is even more impressive that ShrinkWrap is able to improve the slow-

down by around 40%. We attribute this success to the utterly perfect matching

of the program's access pattern to our block mode, especially given that the

program has relatively few synchronization points, we are able to absorb a large

number of the accesses without further computation.

• lufact is a �nancial simulator. Neither FastTrack nor ShrinkWrap re-

port signi�cant reductions in the number of shadow states allocated, nor does

ShrinkWrap eliminate more operations than FastTrack does.

• raytracer allocates many relatively small arrays. Thus the extra computation

required to record footprints and keep track of compression mode is repeated

for each array and cannot be paid for by eliminating race checks because the

arrays are so small.

• sparsemm performs a sparse matrix multiply. The matricise are randomly gen-

erated at runtime, and so the access sequence into the sparse representation is

random. This provides a good stress test and sanity check on any array-focused

optimizations, since the benchmark contains a large array that is accessed ran-

domly. ShrinkWrap does not perform signi�cantly worse than FastTrack.

• moldyn simulates molecular dynamics, using several multi-dimensional arrays

to keep track of the forces, positions, etc. This is the one example where

ShrinkWrap performs signi�cantly worse than FastTrack, despite the op-

timization that no footprints are constructed in �ne mode. Because the target

program uses arrays whose longest dimension is only 2048, the overhead of

constructing footprints cannot be o�set by savings in race checks.

In general, we �nd that for ShrinkWrap to be more time-e�cient than Fast-

Track, two conditions must be satis�ed. First, the program must use patterned

array accesses that can be exploited by the analysis. Second, commits must operate

on large enough footprints to o�set the cost of building them at runtime. That is,

the amortized cost of building and committing footprints must be lower than the

amortized cost of a race check in FastTrack.
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Further Performance Improvements. We brie�y outline several approaches to

further improving the performance of ShrinkWrap.

• Every array access in the target program must attempt to extend the current

footprint with the new index. To date, we have not attempted to optimize our

implementation of footprint extension, but we exect that such an e�ort would

be worthwhile.

• ShrinkWrap synchronizes all threads accessing an array when that array un-

dergoes a mode transition. This synchronization overhead can be signi�cant

if the array is being accessed heavily. A more sophisticated synchronization

discipline may be able to reduce this overhead.

• Instrumentation in�uences the way the HotSpot compiler optimizes the byte-

code of the target program. By examining how ShrinkWrap a�ects the com-

piler and then tuning our implementation in response, it should be possible to

mitigate some of the initial slowdown.



Chapter 6

Conclusions

6.1 Contributions

We have developed an analysis that detects and eliminates two types of redundancy

commonly found in dynamic race detectors when run on array-intensive programs.

Namely, that there are many repeating shadow states in the shadow array, and that

many race checks are redundant. Our analysis compresses the shadow array using

one of several modes; it also delays race check operations until the next synchro-

nization operation in order to take advantage of this compression. We have im-

plemented our analysis in a state-of-the-art race detector and shown that we can

improve performance when the target program accesses arrays in a pattern we rec-

ognize. ShrinkWrap is able to eliminate the vast majority of the accesses that

must be checked by the underlying race detector on almost half of our benchmark

programs. In other cases, it is either not able to recognize a pattern in the program's

accesses, or the program is not array-intensive. However, even when ShrinkWrap

can signi�cantly reduce the number of accesses checked by the underlying algorithm,

it is not always more time-e�cient due to the overhead of constructing footprints. We

believe that ShrinkWrap could be made more e�cient by tuning its implementation

in response to the HotSpot compiler.

71
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6.2 Future Work

The overhead of constructing footprints could be completely eliminated by inferring

access patterns statically. These patterns could then be reported directly to the run

time system, which could then eliminate the dynamic analysis required to discover

them. Together with the fact that we delay race checks until the next synchronization

operation, this has the potential to move essentially all analysis code out of the inner

loops of benchmarks, which could yield large performance improvements. The key

part of such a system would be the design of an e�ective static analysis for precise

access pattern inference. Such a problem is easier than a general static analysis for

race freedom because it need only reason locally about a particular loop, rather than

considering the program as a whole.

ShrinkWrap currently backs o� into �ne mode inde�nitely. In other words,

as soon as an array has been accessed in a way that ShrinkWrap cannot match

with any of its modes, the array will remain uncompressed for the remainder of the

program. In some cases, however, it may be possible to recompress the array at

a later time when the accesses become more patterned. There are two problems

to be overcome in this direction. First, it is not clear what modes to propose for

recompression. Second, checking that an array can be compressed in a given mode is

relatively expensive, since it involves a linear scan of the shadow array. Thus only very

few proposals can be reasonably considered. It may be useful to continue to build

footprints for this purpose, basing the proposed compression mode on the current

access pattern. However, the cost of building footprints when there is no pattern to

the accesses is quite high, so this approach would require care.

Finally, it may be possible to o�oad some of the overhead of creating and manag-

ing footprints to other cores in the machine. In this case, the target program would

be free to continue executing while the race detector worked in the background. This

is similar in spirit to garbage collectors that work without interrupting the running

program.
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