
Modularity for Decidability of Deductive Verification
with Applications to Distributed Systems

Marcelo Taube

Tel Aviv University, Israel

mail.marcelo.taube@gmail.com

Giuliano Losa

UCLA, USA

giuliano@cs.ucla.edu

Kenneth L. McMillan

Microsoft Research, USA

kenmcmil@microsoft.com

Oded Padon

Tel Aviv University, Israel

odedp@mail.tau.ac.il

Mooly Sagiv

Tel Aviv University, Israel

msagiv@post.tau.ac.il

Sharon Shoham

Tel Aviv University, Israel

sharon.shoham@gmail.com

James R. Wilcox

University of Washington, USA

jrw12@cs.washington.edu

Doug Woos

University of Washington, USA

dwoos@cs.washington.edu

Abstract
Proof automation can substantially increase productivity

in formal verification of complex systems. However, unpre-

dictablility of automated provers in handling quantified for-

mulas presents a major hurdle to usability of these tools. We

propose to solve this problem not by improving the provers,

but by using a modular proof methodology that allows us

to produce decidable verification conditions. Decidability

greatly improves predictability of proof automation, result-

ing in a more practical verification approach. We apply this

methodology to develop verified implementations of dis-

tributed protocols, demonstrating its effectiveness.

CCS Concepts • Software and its engineering → For-
mal software verification;

Keywords Formal verification, Modularity, Decidable logic,

Ivy, Distributed systems, Paxos, Raft

ACM Reference Format:
Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon,

Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos.

2018. Modularity for Decidability of Deductive Verification with

Applications to Distributed Systems. In Proceedings of 39th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’18). ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3192366.3192414

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06.

https://doi.org/10.1145/3192366.3192414

1 Introduction
Verifying complex software systems is a longstanding re-

search goal. Recently there have been some success stories

in verifying compilers [29], operating systems [22], and dis-

tributed systems [18, 45]. These broadly use two techniques:

interactive theorem proving (e.g., Coq [4], Isabelle/HOL [37])

and deductive verification based on automated theorem

provers (e.g., Dafny [28] which uses Z3 [11]). However, both

techniques are difficult to apply and require a large proof

engineering effort. On the one hand, interactive theorem

provers allow a user to write proofs in highly expressive for-

malisms (e.g., higher-order logic or dependent type theory).

While this allows great flexibility, it generally requires the

user to manually write long and detailed proofs.

On the other hand, deductive verification techniques use

automated theorem provers to reduce the size of the manu-

ally written proofs. In this approach, user-provided annota-

tions (e.g., invariants, pre- and post-conditions) are used to

reduce the proof to lemmas called verification conditions that
can be discharged by the automated prover. In case these

lemmas fail, the prover can sometimes produce counterex-

amples that explain the failure and allow the programmer to

correct the annotations.

Unfortunately, the behavior of provers can be quite un-

predictable, especially when applied to formulas with quan-

tifiers, which are common in practice, e.g., in distributed

systems. Since the problem presented to the prover is in gen-

eral undecidable, it is no surprise that the prover sometimes

diverges or produces inconclusive results on small instances,

or suffers from the “butterfly effect”, when a seemingly ir-

relevant change in the input causes the prover to fail. As

observed in the IronFleet project, SMT solvers can diverge

even on tiny examples [18]. When this happens, the user

has little information with which to decide how to proceed.

This was identified in IronFleet as the main hurdle in the

verification task.

https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

One approach to address the unpredictability of automated

solvers is to restrict verification conditions to a decidable

fragment of logic [3, 13, 19, 33]. Our previous work on the

Ivy verification system [35, 39, 40] has used the effectively

propositional (EPR) fragment of first-order logic to verify

distributed protocols designs (e.g. cache coherence and con-

sensus). However, the restrictions imposed for decidability

are a major limitation. In particular, these restrictions are

the reason our previous works only verified protocol designs

rather than their executable implementations.

Decidable Decomposition In this paper, we show how to

use well-understood modular reasoning techniques to in-

crease the applicability of decidable reasoning and support

verifying implementations as well as designs. The key idea

is to structure the correctness proof in a modular way, such

that each component can be proved using a decidable frag-

ment of first-order logic, possibly with a background theory.

Importantly, each component’s verification condition can

use a different decidable fragment. This allows, for example,

one component to use arithmetic, while another uses strat-

ified quantifiers and uninterpreted relations. It also allows

each component to use its own quantifier stratification, even

when the combination would not be stratified. We will refer

to this approach as decidable decomposition. Crucially, de-
cidable decomposition can be applied even when the global

verification condition does not lie in any single decidable

fragment (for example, the combination of arithmetic, unin-

terpreted relations, and quantifiers is undecidable).

Because our prover is a decision procedure for the logical

fragments we use, we can guarantee that in principle it will

always terminatewith a proof or a counter-model. In practice,

decidability means that the behavior of the prover is much

more predictable.

Verifying Distributed Systems As a demonstration of de-

cidable decomposition, we verify distributed protocols and

their implementations. Distributed protocols play an essen-

tial role in today’s computing landscape. Reasoning about

distributed protocols naturally leads to quantifiers and un-

interpreted relations, while their implementations use both

arithmetic and concrete representations (e.g., arrays). This

combination escapes known decidable fragments. In particu-

lar, it prevented our previous work on the Ivy verification

system from verifying the implementations of distributed

protocols. Here, we overcome this by applying decidable

decomposition.

We observe in our evaluation that the human effort needed

to achieve decidable decomposition is modest, and follows

well known modular design principles. For example, in our

implementation of Multi-Paxos, we decompose the proof

into an abstract protocol and an implementation, where each

component’s verification condition falls in a (different) de-

cidable fragment.

At the end of the process, we compile the verified sys-

tem to executable code (which uses a small set of trusted

libraries, e.g., to implement a built-in array type). Our prelim-

inary experience indicates that this can be used to generate

reasonably efficient verified distributed systems.

Contributions The contributions of this paper are:

1. A newmethodology, decidable decomposition, that uses
existing modularity principles to decompose the ver-

ification into lemmas proved in (different) decidable

logics.

2. A realization of this methodology in a deductive verifi-

cation tool, Ivy, that supports compilation to C++ and

discharges verification conditions using an SMT solver.

The fact that all verification conditions are decidable

makes the SMT solver’s performance more predictable,

improving the system’s usability and reducing verifi-

cation effort.

3. An application of the methodology to distributed sys-

tems, resulting in verified implementations of two pop-

ular distributed algorithms, Raft and Multi-Paxos, ob-

taining reasonable run-time performance. We show

that proofs of these systems naturally decompose into

decidable sub-problems. Our experience is that verify-

ing systems in decidable logics is significantly easier

than previous approaches.

2 Overview
In this section, we motivate and demonstrate our key ideas

on a simple example.

2.1 Example: Toy Leader Election
Figure 1 shows pseudocode for a node that participates in a

toy leader election protocol, in which a finite set of nodes

decide on a leader. The set of nodes is a parameter of the

system, which is determined at run time and remains fixed

throughout each run of the protocol. Each node may propose

itself as a candidate by sending a message to all nodes. Nodes

vote, by sending a response message, for the first candidate

from which they receive a message. A leader is elected when

it receives a majority of the votes. This protocol will get

stuck in many cases without electing a leader. However, it

suffices to demonstrate our verification methodology, since

it is safe, i.e., at most one leader is elected. Furthermore, a

variant of this protocol is an essential ingredient of both Raft

and Multi-Paxos, which is used in many production systems,

as well as in our evaluation.

The goal of the verification is to show that at most one

leader is elected. Despite the simplicity of the property and

the code, existing verification techniques cannot automati-

cally prove that the code is correct when executed by an un-

bounded number of nodes communicating via asynchronous

channels. Even when the code is annotated with invariants,

the corresponding verification conditions are expressed in

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 // spec: at most one node
2 // sends leader_msg
3

4 alreadyvoted := false

5 voters := ∅

6 upon client_request() do {

7 if ¬alreadyvoted {

8 send request_vote_msg(self)

9 }

10 }

11 upon recv(msg) do {

12 if msg.type = request_vote_msg

13 ∧¬alreadyvoted {

14 alreadyvoted := true;

15 send vote_msg(self, msg.src)

16 } else if msg.type = vote_msg {

17 voters := voters ∪ { msg.src}

18 if |voters | > N /2 {send leader_msg(self)}

19 }

20 }

Figure 1. Toy Leader Election pseudocode.

undecidable logics. As a result, checking them with existing

theorem provers such as Z3 [11] often results in divergence,

and behaves unpredictably in general. Indeed, previous veri-

fication efforts in the systems community identified this as

a major hurdle for verification [18]. The complexity arises

due to the combination of arithmetic, set cardinalities (e.g.,

number of nodes that voted for a candidate), and quantifiers

in the invariant that quantify over unbounded domains (e.g.,

expressing the fact that for every two nodes at most one is a

leader), especially non-stratified quantifier alternations (see

Section 3.2), which give rise to potentially infinitely many

instantiations.

2.2 Approach
In this paper we present a verification methodology based

on decidable reasoning. We use it to develop and verify im-

plementations of distributed systems, whose performance is

similar to other verified implementations (e.g. [46]). Rather

than starting with an existing implementation (e.g., in C),

we define a simple imperative language which permits effec-

tive (decidable) reasoning on one hand, and straightforward

compilation to efficient C++ code on the other hand.

Ourmethod leveragesmodularity in the assume-guarantee

style for decidable reasoning, by structuring the correctness

proof such that different parts of the proof reason about

different aspects of the system, and at different abstraction

levels, enabling each of them to be carried out in (possibly dif-

ferent) decidable logics. The decomposition has two benefits.

First, it allows to reduce quantifier alternations, and elim-

inate bad quantification cycles. Second, it allows to check

the verification conditions of each module using a different

background theory (or none).

2.3 Modular Formulation
We illustrate our methodology on the Toy Leader Election

example, to verify that at most one leader is elected using

decidable reasoning. Our formulation of the system consists

of three modules: toy_protocol, toy_system, and nset. The

interplay between the modules and the decidable fragments

in which they are verified are depicted in Figure 2 (the frag-

ments are defined in Section 3); their code is listed in Figures 3

to 5. The code is written in Modular Decidable Language

use

toy_system

toy_protocol

array
int

node

EPR

EPR

nset
FAU

Figure 2. Modules and

built-in types used for

verifying the toy exam-

ple. Dashed box denotes

a ghost module. Each

module is annotated with

the decidable fragment in

which it is verified.

(MDL) — an illustrative programming language enabling

modular decidable verification.

Each module should be viewed as a proof unit, which con-

sists of (1) declarations and definitions of types and state

components, which may be interpreted using interpret dec-
larations, (2) declarations of other modules and their invari-

ants that are used by themodule, specified by the uses clause,
(3) a module invariantQ , given by all invariant declarations
in the module, (4) procedures with pre-post specifications,

specified by requires and ensures declarations (an unspec-

ified condition is true by default), and (5) declaration of the

module’s initial state, either with init declarations or with
an init() procedure. Intuitively, a module is correct if all its

procedures satisfy their pre/post specification, and also main-

tain the module invariant, assuming that the used modules

are themselves correct. The key property of the modular for-

mulation is that verification conditions generated for each

module fall into decidable fragments (see Section 2.4), which

allows predictable automation.

We elaborate on the modules of the Toy Leader Election

example in Sections 2.3.1 to 2.3.3. Roughly speaking:

(i) The nset module defines (and verifies) a data type which

encapsulates sets of nodes under a first-order interface, and

hides the low-level implementation. This allows other mod-

ules to treat sets of nodes as an opaque type, relying only on

the first-order interface, so their verification can be carried

out in uninterpreted first-order logic. Verifying that the nset

module satisfies its interface is carried out in a suitable the-

ory. The first-order interface includes a predicate that tests if

a set of nodes forms a majority, along with the property that

any two majorities intersect, which is crucial for the proof

of the protocol.

(ii) The toy_protocol module defines (and verifies) an ab-

stract model of the protocol, eliding some of the implemen-

tation details. This is in line with the common practice of

developing a system in an evolutionary process: starting

with a design, and then gradually developing an efficient

implementation. Here this practice serves a different pur-

pose; namely, the toy_protocol captures the protocol design

and its correctness in a ghost object, which is verified sepa-

rately and serves as a lemma for proving the implementation.

This provides a natural way to decompose the verification

problem, and as we shall see, to avoid quantifier alternation

cycles.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

1 ghost module toy_protocol uses nset, nset.majorities_intersect {

2 relation voted : node, node

3 relation isleader : node

4 variable quorum : nset.t

5 init ∀n1, n2 . ¬voted(n1, n2)

6 init ∀n .¬isleader(n)
7 invariant one_leader = ∀n1, n2 . isleader(n1) ∧ isleader(n2) → n1 = n2

8 invariant ∀n, n1, n2 . voted(n, n1) ∧ voted(n, n2) → n1 = n2

9 invariant ∀n : node. isleader(n) →
(
nset.majority(quorum) ∧

10 ∀n′
: node. nset.member(n′, quorum) → voted(n′, n)

)
11 procedure vote(v : node, n : node) {

12 requires ∀n′ .¬voted(v, n′)

13 voted(v, n) := true

14 }

15 procedure become_leader(n : node, s : nset.t) {

16 requires nset.majority(s) ∧ ∀n′
: node. nset.member(n′, s) → voted(n′, n)

17 isleader(n) := true

18 quorum := s

19 }

20 }

Figure 3. Protocol module for Toy Leader Election.

(iii) The toy_system module specifies (and verifies) the

system implementation, using both the data type defined by

nset (relying on its first-order specification) and the abstract

protocol defined by toy_protocol (as ghost code) to obtain a

verified executable implementation.

2.3.1 Abstract Protocol Module
Figure 3 lists the module that formalizes the abstract leader

election protocol. This is a ghost module, which is only used

for the sake of the proof. The module contains two muta-

ble relations that define its state: voted(n1,n2) captures the
fact that n1 voted for n2, and isleader(n) means node n is an

elected leader. The initial state of the module specifies that

both relations are empty. The state also includes a variable

quorum, that remembers the last voting majority observed.

The abstract protocol provides a global invariant (denoted

by invariant), which states that there is at most one leader.

This is similar to a class invariant / object invariant in modu-

lar reasoning. Next, the module contains a proof that all of its

reachable states satisfy the global invariant, by an inductive

invariant. When proving this module, the majority intersec-

tion invariant of the nset module is used, as indicated by the

uses clause in line 1.

The module also provides two procedures that define the

abstract protocol steps. Each procedure specifies a pre con-

dition. The vote(n1,n2) procedure models a vote by n1 for
n2, and its precondition is that node n1 has not yet voted.
The become_leader(n, s) procedure models the election of n
as a leader, and its precondition requires that all nodes in s
voted for n, and that s is a majority. Note that this module is

abstract in the sense that it abstracts network communica-

tion and uses a global view of the system. In particular, the

become_leader does not specify how a node learns that it

received a majority of votes.

1 system module toy_system uses nset, toy_protocol, toy_protocol.one_leader {
2 message request_vote_msg : node

3 message vote_msg : node, node

4 message leader_msg : node

5 // spec: at most one node sends leader_msg :
6 invariant safe = ∀n1, n2 . leader_msg(n1) ∧ leader_msg(n2) → n1 = n2

7

8 relation alreadyvoted : node

9 function voters : node → nset.t

10 procedure init(self : node) {
11 alreadyvoted(self) := false

12 voters(self) := nset.emptyset()

13 }

14 procedure request_vote(self : node) {
15 send request_vote_msg(self)

16 }

17 procedure cast_vote(self : node, n : node) handles request_vote_msg(n) {

18 if ¬alreadyvoted(self) {
19 alreadyvoted(self) := true

20 send vote_msg(self, n)

21 toy_protocol.vote(self, n)

22 }

23 }

24 procedure receive_vote(self : node, n : node) handles vote_msg(n, self) {

25 voters(self) := nset.add(voters(self), n)

26 if nset.majority(voters(self)) {

27 send leader_msg(self)

28 toy_protocol.become_leader(self, voters(self))

29 }

30 }

31 // inductive invariant for the proof:
32 invariant ∀n1, n2 . toy_protocol.voted(n1, n2) ↔ vote_msg(n1, n2)

33 invariant ∀n1, n2 . nset.member(n1,voters(n2))→ toy_protocol.voted(n1,n2)

34 invariant ∀n . leader_msg(n) ↔ toy_protocol.isleader(n)
35 invariant ∀n1, n2 . ¬alreadyvoted(n1) → ¬toy_protocol.voted(n1, n2)

36 open toy_protocol

37 }

Figure 4. System module for Toy Leader Election.

2.3.2 Concrete Implementation Module
Figure 4 lists the concrete system implementation. We con-

sider systems in which a finite (but unbounded) set of nodes

run the same code, and exchange messages. For simplicity,

we assume all messages are broadcast to all nodes. Our net-

work model also allows message dropping, duplication and

reordering. To define the system implementation, we first

define the message types. Lines 2 to 4 define three message

types: request_vote_msg that a node uses to propose itself as

a leader, vote_msg that a node sends to vote for a candidate,

and leader_msg that a node uses to announce it is elected as

the leader. The first field of each message is its source node.

The invariant on line 6 specifies the desired specification, i.e.,

that only one node ever issues a leader_msg message. This

is the ultimate guarantee provided by the implementation,

and it is the only line of trusted specification in the exam-

ple. Namely, one has to trust that this invariant captures

the intended property (e.g., by careful inspection), but the

fact that the implementation maintains it is mechanically

verified. The declarations are followed by the code to be run

on each node. This code (lines 8 to 30) defines the local state

of each node, as well as procedures that can be executed in

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 module nset {
2 type t
3 relation member : node, t

4 relation majority : t

5 function card : t→ int

6

7 interpret t as array<int,node>
8 interpret member(n, s) as ∃i .0 ≤ i < array.len(s) ∧ array.value(s, i, n)
9 interpret majority(s) as card(s) + card(s) > card(node.all)

10

11 invariant majorities_intersect = ∀s1, s2 . majority(s1) ∧majority(s2) →

12 ∃n . member(n, s1) ∧member(n, s2)
13

14 procedure emptyset() returns s:t {
15 ensures ∀n . ¬member(n, s)
16 s := array.empty()

17 }

18 procedure add(s1 : t, n : node) returns s2 : t {
19 ensures ∀n′ . member(n′, s2) ↔ (member(n′, s1) ∨ n′ = n)
20 if member(n, s1) then { s2 := s1 } else { s2 := array.append(s1 , n) }

21 }

22 procedure init() {
23 card := λx .0;
24 for 0 ≤ i < array.len(node.all) {

25 invariant ∀s1, s2 .(∀n .¬(member(n, s1) ∧member(n, s2))) →

26 card(s1) + card(s2) ≤ card(node.all)

27 card := λx .
(
(card(x) + 1) if member(array.get(node.all, i), x) else card(x)

)
28 }

29 }

30 }

Figure 5. The nset module for node sets, proving the major-

ity intersection property.

response to client requests, or procedures that are message

handlers (specified by the handles declaration), and exe-

cuted upon receiving a message from the network. The state

components are defined as functions (or relations) whose

first argument is a node, so that f (n) denotes the local state
of node n. Similarly, all procedures receive as their first argu-

ment the self identifier of the node that runs them. Since the

system module is going to be compiled into an executable

code that runs on each node, we syntactically enforce that

each node may only access and modify its own local state.

We note that the toy_system module makes use of the

nset module to maintain sets of voters, and uses a major-

ity test (line 26). It also makes calls into the ghost module

toy_protocol (lines 21 and 28). This allows to establish an

invariant that relates the state of the concrete module and

the abstract module (lines 32 to 35), and use the proven

invariant of the abstract module as a lemma for proving

the concrete implementation. This is indicated by the uses
clause, which declares use of the toy_protocol.one_leader
invariant (line 1).

2.3.3 Node Set Module
Figure 5 lists the code for the nset module. This module

defines a data structure for storing sets of nodes, with op-

erations for adding to a set and testing whether a set is a

majority. To do so, it defines a type t, whose internal inter-

pretation is MDL’s built-in array, as declared in line 7. Sets

are created using the emptyset and add procedures, which

provide a naive implementation of a set, stored as an array

of its elements. The module defines the member relation,

and provides it with an interpretation via an interpret dec-
laration in line 8. As we shall see, this definition creates an

executable membership test that is translated to a loop that

scans the array.

Most importantly for verifying the leader election mod-

ules, the nset module provides the interpreted majority pred-

icate, with the key property that any two majorities intersect.

This is stated by the majorities_intersect invariant (line 11).

Intuitively, a set is a majority if its cardinality is more than

half the total number of nodes. In Figure 5, the majority pred-

icate is interpreted using the card function to compute the

cardinality of a set of nodes, and the built-in value node.all,
which is an array with the special semantics that it contains

all nodes. The card function computes the cardinality of a

set of nodes, and it is constructed in the init() procedure

of the nset module in a way that establishes the majority

intersection property. The proof is by induction, manifested

in the loop invariant in line 25.

We note that the loop in init() constructs card via a nesting

of N function closures (where N is the number of nodes).

This definition of card allows an easy proof of the majority

intersection property (the λ at line 27 is eliminated from

verification conditions by β-reduction, resulting in first-order
formulas; see Section 4.6). A more efficient implementation

uses array.len (underlying array length) instead of card to

determine if a set is a majority. This implementation is also

provable in our system, but requires additional inductive

invariants to prove that card and array.len coincide, and we

do not present it here in the interest of simplicity.

2.4 Modular Verification in Decidable Fragments
We now explain how verification conditions are generated

for each module, and how they are checked under (possi-

bly different) theories. We use two decidable fragments: the

effectively propositional (EPR) fragment [41] which allows

stratified quantifier alternations, and the finite almost unin-

terpreted (FAU) fragment [17] which includes linear integer

arithmetic in a restricted way.

VerificationConditionGeneration Recall that eachmod-

ule declares the modules and invariants it uses in the uses
clause. Based on this, verification conditions are derived au-

tomatically. Each module must provide the following guar-
antees: 1) The module invariant, Q , holds at any initial state.

2) Every procedure in the module establishes its postcondi-

tion and preserves the module invariant Q , and 3) At each

call site, the precondition of the called procedure is estab-

lished. Each module may rely upon the following assump-
tions: 1) Every called procedure establishes its postcondition

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

and 2) Every used invariant of another module holds at all

times. The verification condition states that the assumptions

imply the guarantees.

As an example, the verification condition generated for

the become_leader procedure (Figure 3 line 15) is:(
Qtoy_protocol ∧Qnset.majorities_intersect ∧

(majority(s) ∧ ∀n′.member(n′, s) → voted(n′,n))
)
→

Qtoy_protocol [(isleader(x) ∨ x = n) / isleader(x) , s / quorum]

where Qtoy_protocol is given by Figure 3 lines 7 to 9 and

Qnset.majorities_intersect is given by Figure 5 line 11. The lat-

ter is used because it appears in the uses clause of the

toy_protocolmodule. The verification condition also includes

the procedure precondition taken from Figure 3 line 16, and

checks that assuming the invariants and the precondition,

the invariant Qtoy_protocol is preserved by the procedure (the

substitutions reflect the assignments of lines 17 and 18).

Optionally, calls to procedures may be inlined (i.e., re-

placed by the procedure body), and we may take the initial

condition of another module as an assumption. If we use

a module in this way, we say the module is opened. As an
example, ghost module toy_protocol is opened in the veri-

fication of toy_system (Figure 4, line 36). This allows us to

establish easily an invariant relating the states of the two

modules. When composing modules, there are additional

conditions required for soundness (e.g., that modules do not

interfere), which are described in Section 4.

Theory Abstractions Recall that every module may in-

clude interpreted types (e.g., int, array) as well as definitions

via interpret declarations. These allow the module to define

its relevant theory. A theory is a (possibly infinite) set of

first-order formulas, which may either be given explicitly

(e.g., the theory of total order), or by using a built-in theory

(e.g., the theory of linear integer arithmetic). The verification

conditions of the module are checked with respect to the

provided theory and definitions. Symbols that are given no

interpretation in the module are treated as uninterpreted,

which may be viewed as a form of abstraction.

For example, when checking the verification condition

of the become_leader procedure given above, the majority

and member relations are treated as uninterpreted relations,

and not according to their definitions from Figure 5 lines 8

and 9. In contrast, when verifying the nset module, these

definitions are used as part of a background theory, which

also includes linear integer arithmetic.

DecidableDecomposition of Toy Leader Election For the

whole picture of our example, observe that the nset mod-

ule uses the int type, which introduces the theory of linear

integer arithmetic. Furthermore, its majorities_intersect in-

variant introduces quantifier alternation from nset.t to node.

The function voters of the toy_system module introduces

a dependency in the opposite direction, as it is a function

from node to nset.t. As a result, had the nset module and its

invariants been inlined within the proof of toy_system, they

would have resulted in verification conditions that combine

arithmetic, quantifier alternation cycles, and uninterpreted

symbols, breaking decidability.

In order to break the bad cycle, we do not directly use

the majorities_intersect invariant of nset in toy_system.

Instead, our proof exploits the toy_protocol module and

its one_leader invariant (which does not introduce depen-

dency from node to nset.t). Namely, the invariant one_leader

is assumed when verifying toy_system, and is verified

separately as part of the toy_protocol module (assuming

the majorities_intersect invariant of nset). In that way,

toy_system only contains functions from node to nset.t,

while toy_protocol only contains dependencies from nset.t

to node, avoiding quantifier alternation cycles.

In terms of theories, the nset module is verified when int is

interpreted using the theory of linear integer arithmetic, and

the nodeset.t type is interpreted as array<int,node> from

our built-in array theory (as explained in Section 4, we en-

code arrays in FAU). Moreover, the member and majority

relations are interpreted by their definitions (Figure 5 lines 8

and 9). The resulting verification conditions for this module

are in FAU.When verifying the toy_protocol and toy_system

modules, sorts and relations (includingmember andmajority)

are uninterpreted. The resulting verification conditions are

in EPR, as the quantifiers in each module are stratified.

We thus see that the separation between the three modules

allows us to obtain decidable verification conditions.

2.5 Compiling to C++ and Runtime System
In order to obtain a verified implementation, Ivy generates

C++ code. During this phase, ghost code (the ghost module

toy_protocol in our example) is sliced out, and every call to a

procedure of a ghost module is treated as skip. The remaining

code is translated to C++, as detailed next.

Translation of Primitive Language Constructs Every

procedure is translated to a C++ function in a straightforward

syntax-directed manner. Control flow constructs are trans-

lated into the corresponding C++ constructs. Interpreted

sorts are given appropriate representations. The built-in

type int is represented by machine integers, arrays are repre-

sented by the STL std::vector template, and record types

are represented by C++ struct.1 Variables of function sort

are represented by pure function closures equipped with a

memo table. Every type in a non-ghost module must have

one of the above as its interpretation.

Arrays in Ivy are immutable, so procedures manipulating

them (e.g., append) return a new array object. For efficient ex-

ecution, the compiler optimizes cases where the modification

1
In the current implementation, integer overflow is not addressed.We intend

this to be handled by an efficient bignum package.

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

can be implemented in place, which is common in our exam-

ples. In particular, all array manipulations in the Toy Leader

Election example are compiled to in-place modifications.

Ivy code may contain quantified formulas as control flow

conditions (e.g., as the condition of an if statement). In non-

ghost context, these must be of the form ∃i : int. a ≤ i ≤
b ∧ φ(i) or ∀i : int. a ≤ i ≤ b → φ(i). Ivy translates such

conditions into for loops. In the Toy Leader Election example,

this mechanism is used to compile the definition of member

(Figure 5 line 8) to an executable test.

Network & Runtime The generated C++ code is intended

to operate in a distributed setting, where each node runs

the same program, and nodes communicate via message

passing (for simplicity, we assume messages are broadcast

to all nodes). Accordingly, a system module must define the

message types, and the local state and procedures of each

node. The local state relations and functions, and the local

procedures, all have an argument of the built-in type node

as their first parameter, which represents the local node. The

generated C++ code includes variables of the appropriate

type that represent the local state of the node. It also includes

the local procedures which can only access the local state of

the node, and may also send messages. Some procedures are

designated as message handlers.

The generated C++ code is linked to client code to form the

complete application. The client code may call the generated

procedures (such as request_vote in the example) in order

to use the service provided by the verified code.

The generated code also includes an additional shim that

takes care of sending and receiving messages, and firing

timers. Namely, message sending is translated to calls to

appropriate shim functions, and the shim calls message han-

dlers or timeout handlers when messages are received or

timers expire, respectively. The shim also initializes the val-

ues of self and node.all with a node identifier, and an array

of all node identifiers, respectively. This information is ob-

tained at run time from a configuration file or command line

arguments. The operator is trusted to run the system with a

correct configuration, i.e., to run processes with unique id’s,

and to provide each process with a correct list of all other

process id’s and network information (e.g., IP addresses and

ports). Ultimately, the trusted base of the verified system

includes the Ivy verifier and compiler (including Z3), the

implementation of built-in types and the shim, and the oper-

ator’s configuration process.

3 Preliminaries
3.1 Formulas and Theories
We consider many-sorted first-order logic with equality,

where formulas are defined over a set S of first-order sorts,

and a vocabulary Σ which consists of sorted constant sym-

bols and function symbols. Constants have first-order sorts

inS, while functions have sorts of the form (σ1×· · ·σn) → τ ,

where σi ,τ ∈ S. In other words, functions may not be higher-

order. We assume that S contains a sort B that is the sort of

propositions. A function whose range is B is called a relation.

If s is a symbol or term and t is a sort, then s : t represents the
constraint that s has sort t . We elide sort constraints when

they can be inferred. A Σ-structure maps each sort t ∈ S to

a non-empty set called the universe of t , and each symbol

s : t in Σ to a value of sort t .
For a set of formulasT , we denote by Σ(T) the vocabulary

of T , that is, the subset of Σ that occurs in T . A theory T is

a (possibly infinite) set of formulas. We use theories to give

concrete interpretations of the symbols in Σ. For example,

a given sort might satisfy the theory of linear order, or the

theory of arithmetic. In particular:

Definition 3.1. A theory T isV-conservative, whereV ⊂

Σ, if every (Σ \ V)-structure σ can be extended to a Σ-
structure σ ′

such that σ ′ |= T .

Intuitively speaking, a V-conservative theory T can be

used to extend the vocabulary with symbols inV , possibly

defining them in terms of other symbols. We can compose

conservative theories to obtain conservative theories:

Theorem 3.2. If T is a V-conservative theory and T ′ is a
V ′-conservative theory, where Σ(T) and V ′ are disjoint, then
T ∪T ′ is a (V ∪V ′)-conservative theory.

That is, definitions can be combined sequentially, provided

earlier definitions do not depend on later definitions.

3.2 Decidable Fragments
We consider fragments of first-order logic for which checking

satisfiability, or satisfiability modulo a theory (i.e., satisfiabil-

ity restricted to models of a given theory T), is decidable.

Effectively Propositional Logic (EPR) The effectively

propositional (EPR) fragment of first-order logic, also known

as the Bernays-Schönfinkel-Ramsey class is restricted to first-

order formulas with a quantifier prefix ∃∗∀∗
in prenex nor-

mal form defined over a vocabulary Σ that contains only

constant and relation symbols, and where all sorts and sym-

bols are uninterpreted. Satisfiability of EPR formulas is de-

cidable [30]. Moreover, formulas in this fragment enjoy the

finite model property, meaning that a satisfiable formula is

guaranteed to have a finite model.

A straightforward extension of this fragment allows strat-
ified function symbols and quantifier alternation, as formal-

ized next. The Skolem normal form of a formula is an equisat-

isfiable formula in ∀∗
prenex normal form that is obtained

by converting all existential quantifiers to Skolem functions.

The quantifier alternation graph of a formula is a graphwhose

vertex set is S \ {B}, having an edge (s, t) if there is a func-
tion symbol occurring in the formula’s Skolem normal form

with s in its domain and t as its range. Notice that a formula

of the form ∀x : s . ∃y : t . φ has an edge (s, t) in its quantifier

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

alternation graph, since the Skolem function for y is of sort

s → t . A bad cycle in the quantifier alternation graph of φ is

one containing a sort s such that some variable of sort s is
universally quantified in the Skolem normal form of φ.
A formula is stratified if its quantifier alternation graph

has no bad cycles. Notice that all EPR formulas are stratified

(since all the Skolem symbols are constants) and so are all the

quantifier-free formulas. A formula φ is virtually stratified
if there is any consistent assignment of sorts to symbols in

Σ(φ) under which φ is stratified. As an example, the formula

∀x : s . ∃y : t . f (x) = y is stratified, since the quantifier

alternation graph contains only the edge (s, t). On the other

hand, ∀x : s . ∃y : t . f (y) = x is not stratified, because the

Skolem function for y has sort s → t , while f has sort t → s .
The formula ∀x : s . f (д(x) : t) = y : s is not stratified, sinceд
has sort s → t while f has sort t → s . However, it is virtually
stratified, since we can resort it as ∀x : s . f (д(x) : t) = y : u.
Also, notice that ∀x : s . f (д(x) : t) = y : t is stratified even

though there is a cycle containing sort t , because this cycle
does not contain a universally quantified variable.

The extended EPR fragment consists of all virtually strati-

fied formulas. The extension maintains both the finite model

property and the decidability of the satisfiability problem

(this is a special case of Proposition 2 in [17]).

Finite Almost Uninterpreted Fragment (FAU) Formulas

in the almost uninterpreted fragment [17] are defined over

a vocabulary that consists of the usual interpreted symbols

of Linear Integer Arithmetic (LIA), equality and bit-vectors,

extended with uninterpreted constant, function and relation

symbols. In this work, we will not use bit-vectors. We recall

that LIA includes constant symbols (e.g., 1, 2, . . .), function
symbols of linear arithmetic (e.g., “+”, but not multiplica-

tion), and relation symbols (e.g., “≤”), all of which are inter-

preted by the theory, which includes all formulas over this

vocabulary that are satisfied by the integers. A formula (over

the extended vocabulary) is in the essentially uninterpreted
fragment if variables are restricted to appear as arguments

to uninterpreted function or relation symbols. The almost
uninterpreted fragment also allows variables to appear in

inequalities in a restricted way (for example, inequalities

between a variable and a ground term are allowed). For ex-

ample ∀x : int. x + y ≤ z, is not in the fragment, since the

variable x appears under the interpreted relation ≤. However

∀x : int. f (x) + y ≤ z is allowed, as is ∀x : int. x ≤ y.
The finite almost interpreted fragment (FAU) is defined

as the set of almost interpreted formulas that are stratified

as defined in [17]. Satisfiability of FAU modulo the theory is

decidable. In particular, in [17] a set of groundings is defined

that is sufficient for completeness. In FAU, this set is finite,

which implies decidability. Moreover, it implies that every

satisfiable formula has a model in which the universes of the

uninterpreted sorts are finite. This is useful for providing

counterexamples. The FAU fragment also subsumes the array

property fragment described in [6].

Of particular importance for our purposes, the SMT solver

Z3 [11] is a decision procedure for the FAU fragment. This is

because its model-based quantifier instantiation procedure

guarantees to eventually generate every grounding in the

required set. This gives us a rich language in which to express

our verification conditions, without sacrificing decidabilty.

4 Modular Proofs
In this section we describe an illustrative modular reasoning

system, using a very simple procedural language as a model

of MDL. This system is not as rich as the system actually

used in the Ivy tool but is sufficient to capture the proof

strategies we apply here.

4.1 A Model Language
Let Σ be a vocabulary of non-logical symbols. The set of

propositions (terms of Boolean sort) over Σ is denoted P.

4.1.1 Statements
The statements in our model language are defined as follows:

Definition 4.1. LetN be a set of procedure names andVP ⊆

Σ a set of program variables. The program statements S are

defined by the following grammar:

S ::= c : τ := t : τ | (S;S) | while p S

| if p S S | call n | skip

where c is inVP , t a term over Σ, τ a sort, p ∈ P, and n ∈ N .

The mutable program variables VP are a subset of Σ. The
statements have the expected semantics. For now, program

variables c are restricted to logical constants, and can only

be assigned terms t of first-order types. We will relax this

restriction in Section 4.6.

4.1.2 Procedures and Modules
The Hoare triples H are denoted {φ} σ {ψ }, where φ,ψ ∈ P

and σ ∈ S. Our notion of procedure definition is captured

by the following definition:

Definition 4.2. A context is a partial function fromN toH .

A context is denoted by a comma-separated list of procedure
definitions of the form n:=H , where n ∈ N and H ∈ H , such

that the names n are unique.

Intuitively, a context is a collection of procedure defini-

tions with corresponding pre/post specifications. In MDL,

the precondition φ of a procedure is introduced by the re-
quires keyword and the postcondition by ensures.

A module is a procedural program that exports procedure

definitions to its environment and has a determined set of

initial states. In the sequel, if f is a partial function, we will

write pre(f) for its pre-image and img(f) for its image. If P

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

is a context, we will write called(P) for the set of names n
such that “call n” occurs in P .

Definition 4.3. A module is a tuple (P ,E, I ,Q), where:
• P is a context.

• E ⊆ pre(P) is the set of exports.
• I ⊆ P is the initial condition of the module.

• Q ⊆ P is the module invariant.

That is, P gives a set of procedure definitions with pre/post

specifications, E gives the subset of these definitions that

is exported to the environment, I is a set of predicates that
are true in the module’s initial state, and ∧Q is an inductive

invariant that holds between calls to exported procedures.

In the sequel, we often use I to denote ∧I and Q to denote

∧Q . We will write PM , EM , IM , QM , respectively, for the

components of module M . In MDL, a module declaration

creates a module, with all procedures exported by default.

The initial condition IM is specified by init declarations. (In
Section 4.6, we allow a module to define an init() procedure

instead of an initial condition.) The invariantQM is given by

the set of invariant declarations in the module.

We define the following operations on modules:

Definition 4.4. LetM = (P ,E, I ,Q) andM ′ = (P ′,E ′, I ′,Q ′)

be modules such that pre(P) ∩pre(P ′) = ∅ and Σ(I) ∩ Σ(I ′) ∩
VP = ∅. The composition of M ′

and M , denoted M ′ +M , is

(P ∪ P ′,E ∪ E ′, I ∪ I ′,Q ∪Q ′).

Definition 4.5. For a module M = (P ,E, I ,Q) and a set

E ′ ⊆ N , the restriction of M to E ′
, denoted M ↓ E ′

, is the

module (P ,E ∩ E ′, I ,Q).

4.2 Axiomatic Semantics
We write P ⊢T {φ}σ {ψ } to denote the judgment that, as-
suming context P and background theory T , if σ starts at

a T -model satisfying φ and terminates in a T -model, then

this model satisfiesψ . In derivation rules, we will drop the

theory T if it is the same for all judgments.

The axiomatic semantics of the statements of our language

is given by the standard rules of Hoare logics:

Cons

T |= (φ ′ ⇒ φ) ∧ (ψ ⇒ ψ ′)

P ⊢T {φ} σ {ψ }

P ⊢T {φ ′} σ {ψ ′}

Comp

P ⊢ {φ} σ {ψ }
P ⊢ {ψ } σ ′ {ρ}

P ⊢ {φ} (σ ;σ ′) {ρ}

While

P ⊢ {φ ∧ p} σ {φ}

P ⊢ {φ} while p σ {φ ∧ ¬p}

If

P ⊢ {φ ∧ p} σ {ψ }
P ⊢ {φ ∧ ¬p} σ ′ {ψ }

P ⊢ {φ} if p σ σ ′ {ψ }

Assign

P ⊢ {φ [t / c]} c := t {φ}

Skip

P ⊢ {φ} skip {φ}

Inline

P ⊢ {φ} σ {ψ }

n:= {φ ′} σ {ψ ′} , P ⊢ {φ ∧ φ ′} call n {ψ ∧ψ ′}

The first is the so-called “rule of consequence”. The remain-

der, respectively, give the semantics of sequential composi-

tion, while loops, conditionals, assignments and “skip”. The

last rule is the Inline rule that gives the semantics of non-

recursive procedure calls: any fact that can be proved about

the body of procedure n in a given context can be used at a

call site of n. Notice that we must still satisfy any specified

pre-condition φ ′
and may use the specified post-conditionψ ′

.

In effect, this allows us to inline a procedure definition at a

call site. This is relatively complete for non-recursive pro-

grams, which include the examples we treat here.

We will write I ; P ⊢ M to represent the judgment that, in

context P , if formulas I hold initially, then moduleM main-

tains its invariant and satisfies its pre/post specifications. It

is assumed that the environment only calls M’s exported

procedures, and otherwise never modifies its program vari-

ables. We elide I or P if they are empty sets. The axiomatic

semantics of modules is given by the following Module rule:

Module

I , IM |= QM
for n:={φ} σ {ψ } in PM :

P , PM ⊢ {φ} σ {ψ } if n ∈ called(PM)

P , PM ⊢ {QM ∧ φ} σ {QM ∧ψ } if n ∈ EM

I ; P ⊢ M

In this rule, QM is an inductive invariant that holds between

calls to exported procedures. It must hold in the initial states

and be preserved by all exported procedures. In addition,

internally called procedures must satisfy their specifications

without assuming the invariant, since the invariant may be

violated during execution of the module’s procedures.

4.3 Rules for Decidable Decomposition
The rules defined in Section 4.2 provide the full axiomatic

semantics. In particular, they enable to verify a program

which consists of multiple modules, say M1, . . . ,Mn , and

exports procedures E to its environment, by proving ⊢ (M1 +

. . . +Mn) ↓ E. However, the class of verification conditions

generated is undecidable. In this section, we provide derived
inference rules that can be used to decompose the proof such

that the verification conditions are in a decidable fragment.

For simplicity, we only present the rules needed for the Toy

Leader Election example. Our implementation includes more

flexible rules that are similar in spirit.

First, we introduce a rule that allows to verify a proce-

dure call without inlining the procedure’s body, by using the

assumption that the procedure satisfies its pre/post specifi-

cation at the call site:

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

Theorem 4.6. The following rule can be derived:

Call

n:= {φ} σ {ψ } , P ⊢ {φ} call n {ψ }

The next rules allow to verify the composition of modules

by verifying the individual modules. We begin by defining

some notation.

Definition 4.7. The callset calls(M, P) of moduleM in con-

text P is the least set of procedures n such that either n
is exported from M , or n is in pre(PM ∪ P) and n is called

from calls(M, P). Formally, calls(M, P) = LFP. λX . EM ∪X ∪

(called(X)∩pre(PM∪P)). The refset ref(M, P) is the subset of
VP occurring in calls(M, P) or in IM . The modset mod(M, P)
is the subset of VP assigned in calls(M, P), or occurring in

IM . ModuleM is said to interfere with moduleM ′
in context

P , denoted M, P { M ′
, if mod(M, P) ∩ Σ(QM ′) , ∅ or if

called(calls(M, P)) ∩ pre(PM ′) ⊈ EM ′ .

In other words,M interferes withM ′
if it either modifies

a variable occurring in the invariant of M ′
, or if it calls an

internal procedure ofM ′
. ModuleM can interfere withM ′

directly, or by calling procedures defined in the context P .
To export an invariant from one module to another, we

introduce two notations. If M is a module and Γ is a set of

formulas, we sayM[Γ] is the module that results from con-

joining ∧Γ to the postcondition of every exported procedure

of M . On the other hand, [Γ]M results from conjoining ∧Γ
to the precondition of every exported procedure ofM .

Now we can derive a compositional rule that allows us to

verify a serviceM ′
layered on a serviceM , while assuming

the invariants and pre/post specifications ofM .

Theorem 4.8. The following rule can be derived:

Layer

I ; P ⊢ M
I ,Θ; P , PM [Γ] ⊢ [Γ]M

′

I ; P ⊢ (M +M ′) ↓ E

M ′ ↓ E, P ̸{ M
M ↓ E, P ̸{ M ′

Γ ⊆ QM
Θ ⊆ IM

Ignore for the moment the expressions in square brackets.

The rule states that, to verifyM ′
layered onM , we first verify

M , then verify M ′
assuming the proved specifications of the

exported procedures of M . Intuitively, this works because

external calls to one module cannot invalidate the invariant

of the other. Note the asymmetry, however. ModuleM must

be proved in context P , which means that it contains no

calls to procedures outside of P , and in particular, no call-

backs intoM ′
. At a call-back, the invariant ofM ′

would not

hold, violating the precondition under whichM ′
is verified.

Technically, this rule can be derived by annotating every

statement of M ′
with the invariants of M . The rule also

allows us to use initial conditions ofM .

The bracketed expressions allow us to assume the proved

invariants ofM when provingM ′
. We do this by assuming

these invariants on entry to every exported procedure ofM ′

and on exit of every exported procedure ofM .

4.4 Ghost Modules and Slicing
Definition 4.9. If P is a context, the slice of P , denoted
slice(P) is the set of procedure definitions which contains

n:={true}skip{true} for each n:={φ}σ {ψ } in P . IfM is a mod-

ule, slice(M) denotes (slice(PM),EM , ∅, ∅).

The following derived rule can be used to slice out a “ghost”

module that is used only for the purpose of the proof. We

say a module M is invisible to M ′
in context P , denoted

M, P ↪̸→ M ′
, if M, P ̸{ M ′

and mod(M, P) ∩ ref(M ′, P) = ∅

and IM isVP -conservative (definition 3.1) and every exported

procedure ofM ′
terminates in context P , starting in all states

satisfying its precondition.

Theorem 4.10. The following rule can be derived:

Slice

P ⊢ (M +M ′) ↓ EM ′

P ⊢ (slice(M) +M ′) ↓ EM ′

M, P ↪̸→ M ′

To prove termination for the examples presented here,

it suffices to verify that there is no recursion and that PM
contains no “while” statements (Ivy supports proof of termi-

nation using a ranking). We must also show that every model

of the theory has an extension to the program variables sat-

isfying IM . In practice we must prove this using Theorem 3.2,

which means that IM must be a conjunction of a sequence

of definitions.

The invisible moduleM can be used like a lemma in the

proof ofM ′
. That is, we make use of its properties and then

discard it, as we did with the abstract protocol model in Toy

Leader Election.

4.5 Theory Abstractions
To allow us to abstract theories, we add one derived rule

Theory to our system:

Theorem 4.11. The following rule can be derived:

Theory

T ,T ′ |= T ′′

P ⊢T∪T ′′ {φ} σ {ψ }

P ⊢T∪T ′ {φ} σ {ψ }

In other words, what can be proved in a weaker theory can

be proved in a stronger theory. This allows us, for example,

to replace the theory of arithmetic with the theory of linear

order, or to drop function definitions that are not needed

in a given module. In Toy Leader Election, for example, we

dropped the theory LIA and the definition of nset.majority

when verifying the abstract model and the implementation,

but used them when verifying the nset module.

4.6 Language Extensions
In this section we introduce some useful extensions to the

basic language which, while straightforward, cannot be de-

tailed here due to space considerations.

Though we have modeled procedure calls as having no

parameters, it is straightforward to extend the language to in-

clude call-by-value with return parameters. In the following

we assume such an extension.

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

We allow assignments of the form f :=λx . e , where f is

function, since the resulting verification conditions can still

be expressed in first order logic [40]. In the compiled code,

the resulting value of f is a function closure. The assignment

f (a):=e is a shorthand for f :=λx . if x = a then e else f (x).
We provide built-in theories for integers and bit vectors

(both with the usual arithmetic operators). In Ivy, these theo-

ries are provided natively by Z3. Finite immutable arrays are

provided as an abstract data type, with functions provided

for length and select, and axiomatically specified procedures

for update and element append. For each finite sort τ (such

as node in Toy Leader Election) the language provides an

array constant τ .all that contains all elements of sort τ . We

used this feature to define the notion of a majority of nodes

in Toy Leader Election.

A moduleM may have a special initialization procedure

M .init() that is called by the environment before any ex-

ports. In this case, the Module rule is modified to require

that this procedure establishes the module invariant with no

precondition (as it does, for example, in the nset module).

4.7 Modeling Network Communication
For simplicity, we will introduce only a model of a broadcast

datagram service, as used in Toy Leader Election. Other

services can be modeled similarly. For each sort µ of mesages

transmitted on the network, we introduce an abstract relation

sent(m : µ) to represent the fact that messagem has been

broadcast in the past. We add to the language a primitive

“sendm : µ” whose semantics is defined by the following

rule:

Send

P ⊢ {φ} sent(m : µ):=true {ψ }

P ⊢ {φ} sendm : µ {ψ }

That is, the effect of “sendm” is to add messagem to the

set of broadcast messages of sort µ. A module using net-

work services for sort µ exports a procedure “recvµ ” that is
called by the network. This procedure takes two parameters:

p : pid to represent the receiving process id and m : µ to

represent the received message. We use ⊢M M , where M is

a collection of message sorts, to represent the judgment that

M satisfies its specifications when composed with a network

that handles messages of sorts in M. The semantics of this

judgment is defined by the following rule:

Network

sent(m : µ) |=T φ

⊢MT M

⊢
M,µ
T M ↓ (EM \ recvµ)

recvµ ∈ EM
PM (recvµ) = {φ}σ {ψ }

In other words, we can assume that the system calls

recv(p,m) only with messages m that have already been

broadcast. This yields a very weak network semantics, al-

lowing messages to be dropped, reordered and duplicated.

In MDL, we used the keyword handles to indicate which

procedures are used to handle received messages of a given

sort. The keyword system indicates a top-level module, to

which the above rule should be applied.

4.8 Proof of Toy Leader Election
To illustrate the inference rules, we explain how to prove Toy

Leader Election by chaining them. LetM1,M2,M3
be, respec-

tively, the modules nset, toy_protocol and toy_system. First,

we prove ⊢T M1
where theoryT consists of the integer arith-

metic and array theories, and the definitions of the majority

and member relations. Next we prove PM1[Γ] ⊢ [Γ]M
2
(using

the Module and Call rules). Here, Γ is the majority inter-

section invariant of nset. Notice we do not use theory T , to
preserve decidability. We then add theory T using the The-

ory rule, and combine with the above using the Layer rule,

to obtain ⊢T M1 +M2
. Then we prove:

IM2 ; P(M1+M2)[Γ′] ⊢ [Γ
′]M3

Here Γ′ is the invariant of toy_protocol used by toy_system.

By separating the proof of this invariant, we avoided a func-

tion cycle. In this proof, we inline the procedures of the

abstract model M2 and use the Send rule to capture the se-

mantics of message sending. Again using the Theory and

Layer rules, we obtain ⊢T (M1 + M2 + M3) ↓ EM3 . We

use the Slice rule to remove the ghost module, obtaining

⊢T (M1 + slice(M2) + M3) ↓ EM3 . Finally, the network rule

hides the message handlers, giving the conclusion:

⊢MT (M1 + slice(M2) +M3) ↓ {request_vote} .

This leaves request_vote as the only exported procedure,

which is called in responce to a client request to initiate the

protocol. The result is a verified equivalent to the code of

Figure 1. Note that these steps are not written explicity, and

are inferred from uses, open, ghost, and system directives.

4.9 Concurrency and Parametricity
Thus far, we have considered a purely sequential program

that presents exported procedures to be called by its envi-

ronment and assumes that each call terminates before the

next call begins. This semantics is implicit in Definition 4.3

and the Module rule. In reality, calls with different values

of the process id parameter p will be executed concurrently.

We need to be able to infer that every concurrent execution

is sequentially consistent, that is, it is equivalent to some

sequential execution when only the local histories of ac-

tions are observed. To do this, we use Lipton’s theory of

left-movers and right-movers [31] (similarly to, e.g., Iron-

Fleet [18]). Since this argument does not relate directly to

the use of decidable theories, we only sketch it here.

First, we need to show that any two statements executed

by two different processes, excepting “send” statements, are

independent. To do this, we require that every exported

procedure have a first parameter p : pid (representing the

process id). We verify statically that every program variable

reference (after slicing the ghost modules) is of the form

f (p, . . .) where p is the process id parameter. Another way

to say this is that all statements except send statements are

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

“both-movers” in Lipton’s terminology. Moreover, by con-

struction, every call from the environment consists of an

optional message receive operation, followed by a combi-

nation of both-movers and sends. Since receive is a right-

mover and send is a left-mover, it follows that every call can

be compressed to an atomic operation, thus the system is

sequentially consistent by construction.

When we compile a module to executable code, we take

the parameter p as a fixed value given at initialization of

the process. We use this constant value to partially evaluate

all program variable references, thus allowing the compiled

code to store the only the state of one process.

4.10 Verification Conditions
We use the inference rules above to generate verification

conditions (VC’s) in the usual manner, as in tools such as

ESC Java [15] and Dafny [28]. These are validity checks

that result from the side conditions of the Module, Network,

and Theory rules, and the standard rule of consequence.

The verifier checks that each VC is in one of our decidable

fragments (taking into account any built-in theories used)

and issues a warning if it is not. The warning may exhibit,

for example, a bad cycle in the quantifer alternation graph.

In case a VC is determined to be invalid by the Z3 prover, the

counter-model produced by Z3 is used to create a program

execution trace that demonstrates the failure of the VC.

5 Evaluation
To evaluate our methodology, we applied it to develop ver-

ified implementations of Raft [38] and Multi-Paxos [26]
2
.

Both protocols implement a centralized shared log abstrac-

tion, i.e., a write-once map from indices to values, which

can be used to implement a fault-tolerant distributed service

using state machine replication (SMR) [42]. We verify that

no two replicas ever disagree on the committed portion of

the replicated log. We implemented only the basic Raft and

Multi-Paxos protocols, without log truncation, state transfer

to slow replicas, persisting the log to disk, crash recovery,

batching, or application-level flow control.

5.1 Verifying Raft and Multi-Paxos
Raft The Raft protocol operates in a sequence of terms. In
each term a leader is elected in a way that is similar to the

toy leader election protocol presented in Section 2, and the

leader then replicates its log on the other nodes. Our decid-

able decomposition consists of a main module that contains

the core protocol logic, and of a module that separates the

local node state from the main module and exposes only

relations in order to avoid quantifier alternations. To sep-

arate theories, Raft also uses the nset module presented in

Section 2 (for node sets with majority testing), and a module

2
The artifact is available at https://www.cs.tau.ac.il/~marcelotaube/

modularity-for-decidability.html

that implements a log data type, internally represented using

Ivy’s built-in arrays. This strategy uses the modular reason-

ing principles explained in Section 4 in a different way than

the strategy used in Section 2 for the Toy Leader Election

example: instead of separating the abstract protocol from

the implementation, it separates the implementation from

the representation of the local state.

The main module contains the message handlers, which

implement Raft’s logic, as well as an inductive invariant that

proves safety. This invariant is proved using the majority

intersection property, which introduces a quantifier alter-

nation edge from node set to node. The state of each node

is naturally represented by a function from node to various

sorts (including node set, e.g., to let each node track its vot-

ers). Combining such functions in the main module would

create quantifier alternation cycles (e.g., between node and

node set). To avoid the cycles, we encapsulate the local state

of nodes in a separate module that exposes only relations.

For example, a node’s current term is concretely represented

by a function t : node → term, and it is exposed as a relation

r : node, term, intended to capture r (n,x) ≡ (t(n) = x), and
an additional relation that captures t(n) ≥ x .
Verification of both the main module and the local state

module is done in EPR, with log indices and terms abstracted

as linear orders. Crucially, although both modules use EPR,

they use different quantifier alternation stratification orders,

so a non-modular proof would fall outside the decidable

fragment. The modules for node sets and logs are verified

in the FAU fragment, which allows the necessary reasoning

about arithmetic.

Multi-Paxos Our approach to implementing and verifying

Multi-Paxos follows the strategy presented in Section 2 for

the Toy Leader Election example. We separate the abstract

protocol and its proof into a ghost module, and use this

module as a lemma for proving the system implementation.

Similarly to Raft, our Multi-Paxos implementation uses

the nset module, which provides an abstract data type of

node sets with majority testing. However, the majority inter-

section property (Figure 5 line 11) is used only in the proof

of the abstract protocol, and is not used when verifying the

implementation module. Therefore, there is no quantifier

alternation edge from quorum to node in the VC’s of the

implementation module, and, contrary to Raft, there is no

need to abstract the local state of the nodes using relations.

5.2 Verification Effort
The Raft verification took approximately 3 person-months.

The code and proof of sum up to 840 lines, among which

300 consist of invariants and ghost code. This gives a proof-

to-code ratio of 0.6 for Raft. Obtaining the Multi-Paxos im-

plementation from the abstract protocol (which was already

proved in [39]) took approximately two person-months of

work. The Multi-Paxos code and proof sum up to 789 lines,

https://www.cs.tau.ac.il/~marcelotaube/modularity-for-decidability.html
https://www.cs.tau.ac.il/~marcelotaube/modularity-for-decidability.html

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

166 of which consist of invariants and ghost code. This gives

a proof-to-code ratio of 0.3 for Multi-Paxos. Ivy success-

fully discharges all VC’s of both Raft and Multi-Paxos in

few minutes on a conventional laptop. During the develop-

ment, Ivy quickly produced counterexamples to induction

and displayed them graphically, which greatly assisted in

the verification process.

For comparison, IronFleet’s IronRSL [18] implementation

is part of a verification effort of 3.7 person-years (which

also includes IronKV, a verified key-value store). Exclud-

ing generic libraries such as verified serialization code and

liveness proofs, which are not verified in the Ivy implemen-

tations, IronRSL consists of roughly 3,000 implementation

and 12,000 proof SLOC. This gives a proof-to-code ratio of 4.

IronFleet’s VC checking was performed on cloud servers to

obtain verification times acceptable for interactive use.

As evidenced by its larger code-base, IronRSL includes

more features than the Ivy implementations presented: log

truncation, batching, and state-transfer are part of IronRSL

(however IronRSL does not support crash recovery). More-

over, more properties are verified compared to the Ivy im-

plementations: IronFleet verifies the network serialization

and deserialization code, some liveness properties, and the

model includes resource bounds (e.g., integer overflows).

The Verdi proof of the Raft protocol [46] consists of 50,000

proof and 530 implementation SLOC, and required several

person-years. Among those 50,000 lines, most are devoted

to manual proofs of lemmas directly required for the Raft

verification, and are thus not immediately generalizable to

other protocols. Generic pieces of code, such as the network

semantics, make up less than 5% of the code base.

5.3 Verified System’s Performance
Our implementations of Raft and Multi-Paxos are compiled

by Ivy to C++, and the resulting code is linked with several

trusted libraries, including a low-level networking interface

based on TCP using non-blocking sends. In order to evaluate

the performance of these verified replication protocols, we

implemented a key-value store that can use either proto-

col internally. Unverified components handle the key-value

store state machine and client communication on top of the

verified replication library. The unverified portion consists

of 785 SLOC of C++. We benchmarked the performance of

these systems against that of two other Raft-based key-value

stores: vard [45], a similar verified system, and etcd [10],

an unverified, production-quality system. Our goal in these

experiments is to show that systems developed with our

decidable verification methodology achieve comparable per-

formance to existing systems.

We benchmarked all systems on a cluster of three Ama-

zon EC2 m4.xlarge nodes, each with 4 (virtual) CPU cores

and 16GB of RAM. The cluster served 16 closed-loop client

processes running on a fourth m4.xlarge node. The client

System Throughput [req/ms] Latency [ms]
Ivy-Raft 13.5 1.2

Ivy-Multi-Paxos 8.7 1.9

vard 4.4 3.7

etcd 9.2 1.7

Figure 6. Performance of SMR-based key-value stores.

processes sent a randomized 50/50 mix of GET and PUT re-

quests to the servers, and wemeasured the observed through-

put and latency. The results are summarized in Figure 6. We

chose 16 client processes through additional experimentation

that revealed increasing the load further does not increase

throughput, and instead causes the systems to become over-

loaded, resulting in performance degradation and instability.

Since our systems do not include application-level flow con-

trol, they do not gracefully handle overload conditions.

While the performance of all systems is roughly in the

same order of magnitude, there are some expected differ-

ences. The systems vary in the languages, libraries, and data

structures used, and they implement different optimizations.

The Multi-Paxos implementation notifies replicas of decision

by broadcasting “decide” messages. In Raft, those messages

are instead piggy-backed on subsequent requests, resulting

in more efficient network usage. Unlike our implementa-

tions, vard and etcd were designed to persist data to disk.

We partially mitigated this difference by modifying vard
to disable disk writes and configuring etcd to use a RAM

disk. Our conclusion from this experiment is that systems

verified with decidable decomposition can achieve similar

performance to existing systems (we do not claim that any

of the systems considered outperforms another).

The results above were obtained while the systems were

operating normally, i.e., a single elected leader and no failures.

To test their fault tolerance, we also measured our systems

during leader failure and reelection. After startup, we let the

system elect a leader and begin servicing client requests, until

a steady state is reached.We then killed the server process on

the leader node and observed the time required before clients

could be serviced again. In both Raft and Multi-Paxos, the

system recovered in 4-5 seconds. This delay is expected due

to the way timeouts are currently set in our implementation,

and could be improved by additional engineering.

6 Related Work
Fully Automatic Verification Fully automatic verifica-

tion of distributed protocols and systems is usually beyond

reach because of undecidability. Bounded checking is success-

fully used, e.g., in Alloy [21] and TLA+ [27], to check correct-

ness of designs up to certain numbers of nodes. This is useful,

due to the observation that most bugs occur with small num-

bers of nodes. However as observed by Amazon [36] and

others it is hard to scale these methods even for very few,

e.g., 3 nodes. Also many of the interesting bugs occur in

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

the implementation. Another approach for automation is

to use sound and incomplete procedures for deduction and

invariant search for logics that combine quantifiers and set

cardinalities [14, 44]. However, distributed systems of the

level of complexity we consider here (i.e., Raft, Multi-Paxos)

are beyond the reach of these techniques. Another direction,

explored in [2], is to verify limited properties (e.g., for ab-

sence of deadlocks), using a sound but incomplete decidable

check. None of the state-of-the-art techniques for fully auto-

matic verification can prove properties such as consistency

for systems implementations. Moreover, when automatic

methods fail, the user is usually left without any solution.

Interactive Verification The IronFleet [18] and Verdi [45]

projects recently demonstrated that distributed systems can

be proved all the way from design to implementation. The

DistAlgo project [7, 32] develops programming methodolo-

gies for interactively verifying distributed systems using

the TLA+ proof system [8]. However, interactive verifica-

tion requires tremendous human efforts and skills. Our work

can be considered as an attempt to understand how much

automation is achievable using modularity. We argue that

invariants provide a reasonable way to interact with veri-

fication tools, since one does not need to understand how

decision procedures such as SMT work. While this work

considers invariant in first-order logic, it may be possible

aplly its principles to richer specification approaches.

Decidable Reasoning about Distributed Protocols
PSync [13] is a DSL for distributed systems, with decidable in-

variant checking in theCL logic [12]. Decidability is obtained
by restricting to the partially synchronous Heard-Of Model.

A partially synchronous model is also used in [1], which de-

velops a decidable fragment that allows some arithmetic with

function symbols and cardinality constraints. The Thresh-

old Automata formalism and the ByMC verification tool

[5, 23–25] allow to express a restricted class of distributed

algorithms operating in a partially synchronous communica-

tion mode. This restriction allows decidability results based

on cutoff theorems, for both safety and liveness. Recently,

[34] presented a cutoff result for consensus algorithms. This

allows to verify, e.g., the core Paxos algorithm, using a cutoff

bound of 5 processes. However, this work is focused on algo-

rithms for the core consensus problem, and does not support

infinite-state per process, that is needed, e.g., to model Multi-

Paxos and SMR. Compared to these works, our approach

considers a more general setting of asynchronous communi-

cation, and uses more restricted and mainstream decidable

fragments that are supported by existing theorem provers.

This is enabled by our use of modularity. Our approach of

applying modularity to obtain decidability will benefit and

become more powerful as more expressive decidable logics

are developed and supported by efficient solvers.

Modularity in Verification The utility of modularity for

simplified reasoning was already recognized in the semi-

nal works of Hoare and Dijkstra (e.g., [20]). Proof assistants

such as Isabelle/HOL [37] and Coq [4] provide various mod-

ularity mechanisms. Deductive verification engines such as

Dafny [28] and VCC [9] employ modularity to simplify rea-

soning in a way that is similar to ours. The program logic

Disel [43] allows modular verification of distributed systems,

with rules somewhat similar to ours. In [16], a series of trans-

formations are applied to obtain a verified implementation

of Multi-Paxos from single-decree Paxos in a compositional

manner. In this landscape, our chief novelties are the use of

modularity for decidability, and a methodology for modu-

lar, decidable reasoning about distributed systems. We note

that unlike Dafny, Ivy performs syntactic checks to ensure

that verification conditions are in decidable logics. Thus, the

user either receives an error message and corrects the spec-

ification or can be assured that the verification problem is

solvable. Our evaluation demonstrates that our methodology

is useful for verifying complex distributed systems, and that

it drastically reduces the verification effort.

7 Conclusion
Modularity is well recognized as a key to scalability of sys-

tems. This paper shows that modularity enables decidability

of reasoning about real implementations of distributed pro-

tocols. Such implementations involve arithmetic, unbounded

sets of processes, and unbounded data structures. For this

reason, we might expect that reasoning about these systems

would require the use of undecidable logics. We have seen,

however, that by a fairly simple modular decomposition, we

can separate the proof into lemmas that reside in decidable

fragments, which in turn can make the use of automated

provers more predictable and transparent.

Acknowledgements We thank Aurojit Panda, our shep-

herd Adam Chlipala, the anonymous referees, and the anony-

mous artifact evaluation referees for their insightful com-

ments. Padon was supported by a Google PhD fellowship.

This publication is part of projects that have received funding

from the European Research Council (ERC) under the Euro-

pean Union’s Seventh Framework Program (FP7/2007–2013)

/ ERC grant agreement no. [321174-VSSC], and Horizon 2020

research and innovation programme (grant agreement No

[759102-SVIS]). The research was partially supported by Len

Blavatnik and the Blavatnik Family foundation, the Blavatnik

Interdisciplinary Cyber Research Center, Tel Aviv University,

and the Pazi Fund. This material is based upon work sup-

ported by the National Science Foundation under Grant No.

1655166, and by the United States-Israel Binational Science

Foundation (BSF) grants No. 2016260 and 2012259.

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Francesco Alberti, Silvio Ghilardi, and Elena Pagani. 2016. Counting

Constraints in Flat Array Fragments. InAutomated Reasoning. Springer,
Cham, 65–81.

[2] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and

Ranjit Jhala. 2017. Verifying distributed programs via canonical se-

quentialization. PACMPL 1, OOPSLA (2017), 110:1–110:27. https:
//doi.org/10.1145/3133934

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A

Decidable Fragment of Separation Logic. In FSTTCS 2004: Foundations
of Software Technology and Theoretical Computer Science, 24th Interna-
tional Conference, Chennai, India, December 16-18, 2004, Proceedings.
97–109.

[4] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Constructions.
Springer. https://doi.org/10.1007/978-3-662-07964-5

[5] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha

Rubin, Helmut Veith, and Josef Widder. 2015. Decidability of Pa-
rameterized Verification. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S00658ED1V01Y201508DCT013

[6] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s

Decidable About Arrays?. In Verification, Model Checking, and Abstract
Interpretation, 7th International Conference, VMCAI 2006, Charleston,
SC, USA, January 8-10, 2006, Proceedings. 427–442. https://doi.org/10.
1007/11609773_28

[7] Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. 2016. Formal Ver-

ification of Multi-Paxos for Distributed Consensus. In FM 2016: Formal
Methods: 21st International Symposium, Limassol, Cyprus, November
9-11, 2016, Proceedings 21. Springer, 119–136.

[8] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan

Merz. 2010. The TLA+Proof System: Building a Heterogeneous Veri-

fication Platform. In Proceedings of the 7th International Colloquium
Conference on Theoretical Aspects of Computing (ICTAC’10). Springer-
Verlag, 44–44.

[9] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,

Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan To-

bies. 2009. VCC: A Practical System for Verifying Concurrent C. In

Theorem Proving in Higher Order Logics, 22nd International Confer-
ence, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings
(Lecture Notes in Computer Science), Stefan Berghofer, Tobias Nipkow,

Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674. Springer,

23–42. https://doi.org/10.1007/978-3-642-03359-9_2
[10] CoreOS 2014. etcd: A highly-available key value store for shared

configuration and service discovery. https://github.com/coreos/etcd.
[11] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture
Notes in Computer Science), Vol. 4963. Springer, 337–340.

[12] Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder,

and Damien Zufferey. 2014. A Logic-Based Framework for Verifying

Consensus Algorithms. In International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer, 161–181.

[13] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016.

PSync: A Partially Synchronous Language for Fault-Tolerant Dis-

tributed Algorithms. ACM SIGPLAN Notices 51, 1 (2016), 400–415.
[14] Bruno Dutertre, Dejan Jovanović, and Jorge A. Navas. 2018. Verifica-

tion of Fault-Tolerant Protocols with Sally. In NASA Formal Methods,
Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer

International Publishing, Cham, 113–120.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. 2002. Extended Static Checking for

Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation (PLDI ’02). ACM, 234–245.

https://doi.org/10.1145/512529.512558
[16] Álvaro García-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey.

2018. Paxos Consensus, Deconstructed and Abstracted. In Program-
ming Languages and Systems - 27th European Symposium on Program-
ming, ESOP 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings.

[17] Yeting Ge and Leonardo De Moura. 2009. Complete instantiation for

quantified formulas in satisfiabiliby modulo theories. In International
Conference on Computer Aided Verification. Springer, 306–320.

[18] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015.

IronFleet: proving practical distributed systems correct. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP. 1–17.

[19] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klar-

lund, Robert Paige, Theis Rauhe, and Anders Sandholm. 1995. Mona:

Monadic Second-Order Logic in Practice. In Tools and Algorithms for
Construction and Analysis of Systems, First International Workshop,
TACAS. 89–110.

[20] C. A. R. Hoare. 1972. Proof of correctness of data representations. 1, 4

(1972), 271–281.

[21] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and
Analysis. The MIT Press.

[22] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon

Winwood. 2010. seL4: formal verification of an operating-system

kernel. Commun. ACM 53, 6 (2010), 107–115.

[23] Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. 2017. A

Short Counterexample Property for Safety and Liveness Verification

of Fault-Tolerant Distributed Algorithms. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). ACM, 719–734.

[24] Igor Konnov, Helmut Veith, and JosefWidder. 2015. SMT and POR Beat

Counter Abstraction: Parameterized Model Checking of Threshold-

Based Distributed Algorithms. InComputer Aided Verification. Springer,
Cham, 85–102.

[25] Igor V. Konnov, Helmut Veith, and Josef Widder. 2015. What You

Always Wanted to Know About Model Checking of Fault-Tolerant

Distributed Algorithms. In Perspectives of System Informatics - 10th
International Andrei Ershov Informatics Conference, PSI 2015, in Memory
of Helmut Veith, Kazan and Innopolis, Russia, August 24-27, 2015, Revised
Selected Papers (Lecture Notes in Computer Science), Manuel Mazzara

and Andrei Voronkov (Eds.), Vol. 9609. Springer, 6–21. https://doi.org/
10.1007/978-3-319-41579-6_2

[26] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133–169. https://doi.org/10.1145/279227.279229

[27] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[28] K Rustan M Leino. 2010. Dafny: An automatic program verifier for

functional correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning. Springer, 348–370.

[29] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115.

[30] Harry R. Lewis. 1980. Complexity results for classes of quantificational

formulas. J. Comput. System Sci. 21, 3 (1980), 317 – 353.

[31] R. J. Lipton. 1975. Reduction: Amethod of proving properties of parallel

programs. Commun. ACM 18, 12 (1975), 717–âĂŞ721.

[32] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. 2017. From Clarity to Effi-

ciency for Distributed Algorithms. ACM Transactions on Programming
Languages and Systems 39, 3 (July 2017).

https://doi.org/10.1145/3133934
https://doi.org/10.1145/3133934
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-642-03359-9_2
https://github.com/coreos/etcd
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1145/279227.279229

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

[33] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. 2011. Decid-

able logics combining heap structures and data. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. 611–622.

[34] Ognjen Maric, Christoph Sprenger, and David A. Basin. 2017. Cutoff

Bounds for Consensus Algorithms. In Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-
28, 2017, Proceedings, Part II (Lecture Notes in Computer Science), Rupak
Majumdar and Viktor Kuncak (Eds.), Vol. 10427. Springer, 217–237.

https://doi.org/10.1007/978-3-319-63390-9_12
[35] Kenneth L. McMillan. 2016. Modular specification and verification

of a cache-coherent interface. In 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6,
2016, Ruzica Piskac and Muralidhar Talupur (Eds.). IEEE, 109–116.

https://doi.org/10.1109/FMCAD.2016.7886668
[36] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc

Brooker, and Michael Deardeuff. 2015. How Amazon web services

uses formal methods. Commun. ACM 58, 4 (2015), 66–73.

[37] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Vol. 2283. Springer
Science & Business Media.

[38] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-

standable Consensus Algorithm. In 2014 USENIX Annual Technical Con-
ference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. 305–
319. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/ongaro

[39] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.

Paxos Made EPR: Decidable Reasoning About Distributed Protocols.

Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages.
https://doi.org/10.1145/3140568

[40] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and

Sharon Shoham. 2016. Ivy: safety verification by interactive gen-

eralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016. 614–630.

[41] F. Ramsey. 1930. On a problem in formal logic. In Proc. London Math.
Soc.

[42] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial. ACM Computing Surveys
(CSUR) 22, 4 (1990), 299–319.

[43] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming

and proving with distributed protocols. PACMPL 2, POPL (2018), 28:1–

28:30.

[44] Klaus v. Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. 2016.

Cardinalities and Universal Quantifiers for Verifying Parameterized

Systems. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’16). ACM, 599–

613.

[45] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi

Wang, Michael D. Ernst, and Thomas E. Anderson. 2015. Verdi: a frame-

work for implementing and formally verifying distributed systems.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17,
2015. 357–368.

[46] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas E. Anderson. 2016. Planning for change in a formal

verification of the raft consensus protocol. In Proceedings of the 5th
ACMSIGPLANConference on Certified Programs and Proofs, Saint Peters-
burg, FL, USA, January 20-22, 2016, Jeremy Avigad and Adam Chlipala

(Eds.). ACM, 154–165. https://doi.org/10.1145/2854065.2854081

https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1109/FMCAD.2016.7886668
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 Overview
	2.1 Example: Toy Leader Election
	2.2 Approach
	2.3 Modular Formulation
	2.4 Modular Verification in Decidable Fragments
	2.5 Compiling to C++ and Runtime System

	3 Preliminaries
	3.1 Formulas and Theories
	3.2 Decidable Fragments

	4 Modular Proofs
	4.1 A Model Language
	4.2 Axiomatic Semantics
	4.3 Rules for Decidable Decomposition
	4.4 Ghost Modules and Slicing
	4.5 Theory Abstractions
	4.6 Language Extensions
	4.7 Modeling Network Communication
	4.8 Proof of Toy Leader Election
	4.9 Concurrency and Parametricity
	4.10 Verification Conditions

	5 Evaluation
	5.1 Verifying Raft and Multi-Paxos
	5.2 Verification Effort
	5.3 Verified System's Performance

	6 Related Work
	7 Conclusion
	References

